
 1

������ ���	�
�� ���
�������

�� �� � ������������ � ��������

& � ��������
������	���

����	�����
������	����� 	
	��� ����

 ���������	
�����
�
�
�

	������� ������ ��� Socket
Programming ! Windows

����
����	 2004

 2

	������� ������ ��� Socket
Programming ! Windows

�
���������

�

�"�#!$�%&�� #��
�'%��()#!�
������ �� 	
������
���� 	��� ����������� �� ������ winsock.h winsock2.h ���
�
��� link �� ������ wsock32.lib 	�� ������ ������	���.

#include <winsock2.h>
#include <winsock.h>
#include <windows.h>

WinSock: �*+�#�"�&� �
�� ����� ���� ����� � ���	� ��� WSAStartup ��� ��� ������	� ��
 interface 	��
WinSock.

WSADATA wsaData;
WORD version;
int error;

version = MAKEWORD(2, 0);

error = WSAStartup(version, &wsaData);

/* check for error */
if (error != 0)
{
 /* error occured */
 return FALSE;
}

/* check for correct version */
if (LOBYTE(wsaData.wVersion) != 2 ||
 HIBYTE(wsaData.wVersion) != 0)
{
 /* incorrect WinSock version */
 WSACleanup();
 return FALSE;
}

/* WinSock has been initialized */

 3

Server: ,����-*�&� !��� Socket

SOCKET server;

server = socket(AF_INET, SOCK_STREAM, 0);

Server: �##&�� � Server
struct sockaddr_in sin;

memset(&sin, 0, sizeof (sin));

sin.sin_family = AF_INET;
sin.sin_addr.s_addr = htonl(INADDR_ANY);
sin.sin_port = htons(5000);

if (bind(server,(struct in_addr *)&sin, sizeof (sin)) == SOCKET_ERROR)
{
 /* could not start server */
 return FALSE;
}

Server: �#�������� ��� Client
while (listen(server, SOMAXCONN) == SOCKET_ERROR);

Server: �"���+) ���� ���! ��
SOCKET client;
int length;

length = sizeof sin;
client = accept(server, (struct in_addr *)&sin, &length);

Client: ,����-*�&� !��� Socket
SOCKET client;

client = socket(AF_INET, SOCK_STREAM, 0);

Client: ����"� ��� Host
��� ��� ���
�
 ��
 client ����
����� �� ������	��� � host 	��� �� �� �� �����. !��
���
������, ���� "���
�� �� 	
���"���� �� ��� danaos.cslab.ntua.gr
���	���������� ��� 	
�
���	� gethostbyname.

struct hostent *host;

 4

host = gethostbyname("danaos.cslab.ntua.gr ");Client: Connecting to Server

struct sockaddr_in sin;

memset(&sin, 0, sizeof sin);

sin.sin_family = AF_INET;
sin.sin_addr.s_addr = ((struct in_addr *)(host->h_addr))->s_addr;
sin.sin_port = htons(5000);

if (connect(client ,(struct in_addr *)&sin, sizeof sin) == SOCKET_ERROR)
{
 /* could not connect to server */
 return FALSE;
}

�"� ��%) #�� �).� ,!���/�0�
#� ��� ������ socket 	����	� �������� �� 	�����
�� �������� ���	�����������
��� 	
�
���	� send and receive data ���	����������� ��� recv.

�%!&������ /�� Socket
$��� "���
�� �� ����	�
�� ��� socket, �������� �� �� �
��
�� �������� ��
	
�
���	� closesocket.

closesocket(server);

WinSock: Shutdown
Once finsished with the WinSock system, we need to shut it down by calling the
function WSACleanup.

WSACleanup();

�*+�#�"�&� � ��- WinSock
���� ��� ��� ���	� � � winsockets, �� Winsock ������ �� ����������"��. ���� ���
�
��, �� � ���� ��� ������"�� ������ �� 	
��������"��� ���� �� �����������
������������ ��� ������"����. %�	�, 	� �
"� ������ ������, ��
 ���������� � ���	�
� � winsockets, ������ �� �
���� include ��� winsock.h �����������:
 #include <winsock.h>

&��	��, ������ �� 	
������
���� ��� wsock32.lib ������"��� 	��� ���� �
"�
module. !�� �� ����� �
��, ���	�� ��
������ 	� visual �����
����, ������ ��
������	��� �� settings ��
 project. ����	�� Alt+F7, �����'�� �� project 	�� 	���
��	�� �����'�� "All Configurations" ��� ��� ��	�� �
��. ��������� 	�� "Link" tab,

 5

��� 	��� text-box ��� "Object/library modules" "� ����� ��� 	���

�� � .lib ����� �.
���	"�	�� �� wsock32.lib 	�� ��	��.

���	 � ���
 ��	�� ������� �� ����	��� 	
�����	���. ���� ����	��� �� ��������
sockets, ������ �� ����������	��� �� Winsock. (
��� �
�� ��� ������ 	��
	
�
���	� ������	�� �.�. 	�� WinMain()
 WSAData wsa;
 WSAStartup(MAKEWORD(1, 1), &wsa);

�
�� ���� 	�� Winsock �� '�����	�� ��� �� ����� ������ �� ��
��)��. &
� ��
'��
	��� "� �
���� ��� ���
�� �
"�
� (10093 (WSANOTINITIALISED) errors).

,����-*�&� !��� Server Socket
!�� �� ����'��� ��� socket ��� listening, ������ ��:

1. *���������� ��� socket

2. ���	��	��� �� socket 	� ��� port

3. +� ����� 	� ��� socket �� ����	�� �� ������

4. +� �� "�	��� 	��� �	������� ���
	��	� (asynchronous mode) (non
blocking)

�����
� "� ������ ������� ��	���� ����	��� ����������: sin ����� � “socket
address struct” ��� sock ����� �� handle ��� �� listening socket. +� 	���� "�� ��� ��
sock ������ �� ����� ���	�
	��� globally ��� ��� ���� �����
.
 sockaddr_in sin;
 SOCKET sock;

����� ��	���	��� ��� socket. ���� �
���� ��������� �� ��� socket ������ ��
����	��� ��� socket() 	
�
���	� ��� �� �
���� ��� socket handle. �
�� �
	
�
���	� ���	������ ��� SOCKET, � SOCKET_ERROR 	��� ������ 	�
��������� �
"�
�.
 if((sock = socket(PF_INET, SOCK_STREAM, 0)) == SOCKET_ERROR)
 return FALSE;

,�� 	
������ ������ �� ���	��	��� (bind) �� ��� socket ��
 �����
���"��� 	� ���
port, ���. �� ����� ���� port ������ �� ���	�������	�� �� socket. &
� ���
����� ����
client 	
��" � ������ �� ���	��	��� �� socket 	�� port 0, ��	� �	�� �� Winsock ��
�����'�� ��� �
���� port. ,�����	�� ��� ��� ����������� ����� ��� �� port 0, ������
�� ���	�������	��� ��� htons() 	
�
���	�. �
�� ���������� ��� ���"�� 	� ���
����������� network-order short.
/* Set the family for the socket to internet */
 sin.sin_family = AF_INET;

/* Set to use port 1234 */
 sin.sin_port = htons(1234);

 if(bind(sock, (sockaddr *)&sin, sizeof(sockaddr_in) ==
SOCKET_ERROR)
 return FALSE;

 6

,�� 	
������, ���� 	�� socket �� ����	�� ��
��
��. �
�� ���������������� �� ��
	
�
���	� listen(). �
�� ���� ������ ���������
� ���
 � ���� �'��	���� �� �����
� backlog, � ����� ��� ���������� ��	�� pending connections "� �����	��, ������
��	�� 	
���	���, �� ������ ��� ���
� ������	�� ����� ����, "� �����"��� 	� ���
���"���
���� ���� (not called accept on). ,
��" �, �
� �� "�	��� �	� �� 100 ��� "�
����� ������ ��������.
 if(listen(sock, 200) == SOCKET_ERROR)
 return FALSE;

�����, ��� ����		������ ����� "����� �� "�	��� �� socket 	� ���
	��	� (mode) non-
blocking. �
�� 	�������, ��� ���� 	
������� �
��, ���� 	�� winsock �� 	�� 	������
��� ���
�� ���� �� �
��� blocking �� �����
 	�� (��� �'������� ��� ��� 	
�
���	�
����� ��� ����
�� ������� 	�). �
�� ����
��
����� �� ��� WSAAsyncSelect(),
���	����������� �� FD_ACCEPT event. �
�� � 	
�
���	� ����� �����

���������.
/* Main.hWnd should contain the HWND of the window you're using for
socket stuff */
 WSAAsyncSelect(sock, Main.hWnd, WM_USER + 1, FD_ACCEPT);

����� ��� ���, �������� �� ���	�������	��� ��� WSAAsyncSelect() ��� ���
 ���
��� SOCKET. &������� ���	��� ��� "� ��
��	�
� ��� ������������. ¨%�	� ��� ��
	
��
�	���� �������
 �������� �������� �� ���	�������	��� ��� �
�����
����	��|. �.�.. FD_READ | FD_CLOSE

&��	��, � WSAAsyncSelect "� 	������ �� ���
�� ��
 ��"���	��� 	�� ���
"
��
��
 ���	�� ����� ��"���	��. #���� �� ���
�� ���"�� "� �
���� ���	�� �� SOCKET
	�� ����� �� ������� (event) ����� ���� 	�� wParam. �� lParam �������� �� event
��
 ����� ���� 	�� low word, ��� ��� error code 	�� high word. �� ���
�� �����
�����
 �
"������ (arbitrary), ���
 ������ �� ����� ��������. ���� ����� ��� socket
	� ���
	��	� listening.

,����-*�&� !��� Client Socket
���� ���� �����
���"�� ��� listening socket, ������ �����
���"�� ��� ���	� ����
�
��. �� client socket ������ �� ������	�� ��� 	���
 ��� �����
�����, 	� 	���
, 	�
����	������ �� �� server socket. �
�
 ������"����� 	�� 	
������:

1. -����
���� ��
 socket

2. ���	��	� ��
 	� �
���� port (�
�� �� ���
 ���	������� 	�� port 0, �	�� ��
�������� ��� �
���� port)

3. �������� 	����	��

4. *�"���	��� non-blocking

&�� ������"����� �� ������������� ����	���. *�� �
��, �� SOCKET sock ������ ��
����� global.
 SOCKET sock;
 sockaddr_in LocalSin, RemoteSin;

/* This is the family for the socket */
 LocalSin.sin_family = AF_INET;

 7

/* This is the port to connect from. Setting 0 means use random port
*/
 LocalSin.sin_port = 0;

 RemoteSin.sin_family = AF_INET;
/* This is the port to connect to */
 RemoteSin.sin_port = htons(nPort);

����, ������ �� ���	��"�� � IP ����"
�	� ���� ��� ����� �������
��� � 	����	�
	�� remote address struct. .	��	�, ��� ���	����������� �
���� string, ���
 network-
byte order numbers... / ��������� ��� string 	� network-byte order ������� �� ��
	
�
���	� inet_addr():
 if((RemoteSin.sin_addr.S_un.S_addr = inet_addr(szIP)) ==
INADDR_NONE)
 return false; // Error setting IP

/ �����
���� ��
 socket ������� �� ��� ���� ����� �� � ��� ������
��� �...
 if((sock = socket(PF_INET, SOCK_STREAM, 0)) == SOCKET_ERROR)
 return false; // Error creating socket

���� �� socket ���	������� 	�� local port �� ���	� ��� 	
�
���	�� bind(), �� �
����� ��� ���
 �� �����
���� ��
 server socket.
 if(bind(sock, (sockaddr *)&LocalSin, sizeof(sockaddr_in)) ==
SOCKET_ERROR)
 return false; // Error binding socket

,�� 	
������, ������� ������ 	�� socket �� ��������"�� �� 	
���"��. �
�� ������� ��
�� 	
�
���	� connect().
 if(connect(sock, (sockaddr *)&RemoteSin, sizeof(sockaddr_in))
== SOCKET_ERROR)
 return false;

*�� �
��, "���
�� �� Winsock �� 	������ ��� ���
�� ���� 	
������� �
���� �������
(event). &�’ �	�� �� ���� ��� ������������� events ����� � ��)� ������� � ��� ��
����	��� ��
 socket, ���	���������� �� FD_READ | FD_CLOSE. �� WM_USER +
2 ����� �
"������, ���
 ���� 	���	�� �� ����� ��������.
/* Main.hWnd should contain the HWND of the window you're using for
socket stuff */
 WSAAsyncSelect(sock, Main.hWnd, WM_USER + 2, FD_READ |
FD_CLOSE);

�%!& ��� ��- Socket
�� ����	��� ���� socket ����� ���� ������. 0��	����������� � 	
�
���	�
closesocket():
 closesocket(MySock);

 8

�!*���� ��� ��- Winsock
,�� ����� �
"� �����
������ ������ �� �������	���� ��� �� �����������. $���
���	������������ �� Winsock, �
�� ������� �� �� 	
�
���	� WSACleanup(). �
��
� ���	� ����"������� 	�� 	
�
���	� �������	���, �	�� �� ���������� ���� ���
���
.
 WSACleanup();

�"� ��%) ,!���/�0�
,� �� ���	�����
� �� sockets �� ��� ������� �� 	������� ��������;

/ ���	���� ������� � ��	� ��� ��� socket ������� �� �� 	
�
���	� send(). +�
	���� "�� ��� ������� � ���
����� �� ����� � � ������� � ���� ���	����. ��
���	�������� �������, �� ����� ��������� �� �� 	
�
���	� strlen(), ��� ���
���������
���, �� ����� ��������� �� ��� ����	�� sizeof.
 send(sock, "Test String", 12, 0);
-�-
 MyStruct a;
 send(sock, (char *)&a, sizeof(MyStruct), 0);

!� �������� �
��, ���� ������ ��� �� ���	����� ���"�� strings �������� 	��
	
������. ,� ������ 	� ��
 ���	��������� ���� string, �
�� � ��"���� �����
�������.
 SendData(sock, "This is some data!");
 ...

int SendData(SOCKET sock, char * lpszData)
{
 return send(sock, lpszData, strlen(lpszData), 0);
}

�).� �!���/�0�
,� �� ���	������ � ���	���� ������� � �� �
��� ���
�
 ��� �� ����
���; �
�� ��
����
�� ������ ����
��� �������� ��� ��� socket, ��� ������� ��� message box ��

�������� �� �������� ��
 ����"�	��.

�
�� �� ����
�� ������ ������ �� ����"���"�� 	�� WinProc code ��� ��� ��� server
��� ��� ��� client:
 switch(uMsg)
 {
 ...
 case WM_USER + 2:
 HandleData(wParam, lParam);
 break;
 ...

 9

int HandleData(WPARAM wParam, LPARAM lParam)
{
 SOCKET sock = (SOCKET)wParam;
 WORD event = LOWORD(lParam);
 WORD error = HIWORD(lParam);

 if(event == FD_CLOSE)
 {
 closesocket(sock);
 }
 else if(event == FD_READ)
 {
 char szBuffer[1024];
 ZeroMemory(szBuffer, 1024);
 recv(sock, szBuffer, 1024, 0);

 MessageBox(Main.hWnd, szBuffer, "Received Data!",
MB_OK);

 closesocket(sock);
 }
 return TRUE;
}

����, ���� ����
������ ��������, �
�
 ����"�������� 	� ��� message box ��� ��
socket �������. ,� ������ 	� ��
 �� port "���� �� ����	��, �� ��������� ��
����� �����.

,��+!&*� � 	$�%�1�0�
&� 	
������, � ��������	� 	����
� � ����� ����. ,
��" �, ���� 	
������� 	�
���,
� 	
�
���	� ���	������ SOCKET_ERROR, ��� �
��� set ��� error code. �
�� ��
error code ����
����� �� �� 	
�
���	� WSAGetLastError().
 int Error = WSAGetLastError();

 if (Error == WSANOTINITIALISED)
 ...

�� MSDN online ������� ��� ��	�� � � error codes, ��
 ��� �
����� ������"���� 	��
���
�����.

�"���+) 	-��/ !0�
&��	��
�
���� ��� socket ��
 ������� listen, ���������� ��
�
���� �����	��� � �
����	� � ��� 	
���	���.

,��� ������ ��
 �����
���"��� �� listening socket, ��"���	���� �� ���	��������
��� 	
���������� ���
�� (�� WM_USER + 1) 	� ��� 	
���������� ���
"
��
(Main.hWnd). ���� "� ����� � � �
�� �� ���
"
�� ������ �� �����	��� �
�� ��
���
��. ,�� WindowProc, 	
���������
����� � �����
� �������:
 switch(uMsg)
 {
 ...

 10

 case WM_USER + 1:
 HandleAccept(wParam, lParam);
 break;
 ...
}

int HandleAccept(WPARAM wParam, LPARAM lParam)
{
 SOCKET sock = (SOCKET)wParam;
 WORD event = LOWORD(lParam);
 WORD error = HIWORD(lParam);

 if(event == FD_ACCEPT)
 {
 sockaddr_in NewRemoteSin;
 SOCKET newsock = accept(sock,
(sockaddr*)&NewRemoteSin, NULL);

/* NOTE: Now NewRemoteSin contains the address of the new client.
 And newsock contains the socket that has the new connection
*/

 WSAAsyncSelect(newsock, Main.hWnd, WM_USER + 2,
FD_READ | FD_CLOSE);

 SendData(newsock, "Hello, welcome to my server.");
 }
 return TRUE;
}

���� �
�� �� ���
"
�� ���������� ��	��������� 	
���	���, 	������ 	��� ��� client
�� string "Hello, welcome to my server.", ��� ��������� ��� ������	�.

&���������
 –��� ��� ����
�� ���
����������- ������ �� ����� ���	� ���
	
�
���	�� select :

int select(int nfds, fd_set* readfds, fd_set* writefds, fd_set* exceptfds, const
struct timeval* timeout)

���$�*/�
�� �������� ����� ��� �� �������	��� ��� 	
�����	��� ����� � MSDN:
http://msdn.microsoft.com/library/default.asp

 11

���������
Error Codes in the API
�� �����
"� ����� ��� ��	�� ��� ��"��
 error codes �� � ������
������ ���
WSAGetLastError call, ��"�� ��� �� ��� ���������� ��
�.
WSAEACCES

(10013)
Permission denied.
An attempt was made to access a socket in a way forbidden by its access permissions. An
example is using a broadcast address for sendto without broadcast permission being set using
setsockopt(SO_BROADCAST).

Another possible reason for the WSAEACCES error is that when the bind function is called
(on Windows NT 4 SP4 or later), another application, service, or kernel mode driver is bound
to the same address with exclusive access. Such exclusive access is a new feature of Windows
NT 4 SP4 and later, and is implemented by using the SO_EXCLUSIVEADDRUSE option.

WSAEADDRINUSE
(10048)
Address already in use.
Only one usage of each socket address (protocol/IP address/port) is normally permitted. This
error occurs if an application attempts to bind a socket to an IP address/port that has already
been used for an existing socket, or a socket that wasn't closed properly, or one that is still in
the process of closing. For server applications that need to bind multiple sockets to the same
port number, consider using setsockopt(SO_REUSEADDR). Client applications usually
need not call bind at all - connect chooses an unused port automatically. When bind is called
with a wildcard address (involving ADDR_ANY), a WSAEADDRINUSE error could be
delayed until the specific address is committed. This could happen with a call to another
function later, including connect, listen, WSAConnect or WSAJoinLeaf.

WSAEADDRNOTAVAIL
(10049)
Cannot assign requested address.
The requested address is not valid in its context. This normally results from an attempt to bind
to an address that is not valid for the local machine. This can also result from connect, sendto,
WSAConnect, WSAJoinLeaf, or WSASendTo when the remote address or port is not valid
for a remote machine (for example, address or port 0).

WSAEAFNOSUPPORT
(10047)
Address family not supported by protocol family.
An address incompatible with the requested protocol was used. All sockets are created with an
associated address family (that is, AF_INET for Internet Protocols) and a generic protocol
type (that is, SOCK_STREAM). This error is returned if an incorrect protocol is explicitly
requested in the socket call, or if an address of the wrong family is used for a socket, for
example, in sendto.

WSAEALREADY
(10037)
Operation already in progress.
An operation was attempted on a nonblocking socket with an operation already in progress -
that is, calling connect a second time on a nonblocking socket that is already connecting, or
canceling an asynchronous request (WSAAsyncGetXbyY) that has already been canceled or
completed.

WSAECONNABORTED
(10053)
Software caused connection abort.
An established connection was aborted by the software in your host machine, possibly due to
a data transmission time-out or protocol error.

WSAECONNREFUSED
(10061)
Connection refused.

 12

No connection could be made because the target machine actively refused it. This usually
results from trying to connect to a service that is inactive on the foreign host—that is, one with
no server application running.

WSAECONNRESET
(10054)
Connection reset by peer.
A existing connection was forcibly closed by the remote host. This normally results if the peer
application on the remote host is suddenly stopped, the host is rebooted, or the remote host
used a hard close (see setsockopt for more information on the SO_LINGER option on the
remote socket.) This error may also result if a connection was broken due to keepalive activity
detecting a failure while one or more operations are in progress. Operations that were in
progress fail with WSAENETRESET. Subsequent operations fail with
WSAECONNRESET.

WSAEDESTADDRREQ
(10039)
Destination address required.
A required address was omitted from an operation on a socket. For example, this error is
returned if sendto is called with the remote address of ADDR_ANY.

WSAEFAULT
(10014)
Bad address.
The system detected an invalid pointer address in attempting to use a pointer argument of a
call. This error occurs if an application passes an invalid pointer value, or if the length of the
buffer is too small. For instance, if the length of an argument which is a SOCKADDR
structure is smaller than the sizeof(SOCKADDR).

WSAEHOSTDOWN
(10064)
Host is down.
A socket operation failed because the destination host is down. A socket operation
encountered a dead host. Networking activity on the local host has not been initiated. These
conditions are more likely to be indicated by the error WSAETIMEDOUT.

WSAEHOSTUNREACH
(10065)
No route to host.
A socket operation was attempted to an unreachable host. See WSAENETUNREACH

WSAEINPROGRESS
(10036)
Operation now in progress.
A blocking operation is currently executing. Windows Sockets only allows a single blocking
operation to be outstanding per task (or thread), and if any other function call is made
(whether or not it references that or any other socket) the function fails with the
WSAEINPROGRESS error.

WSAEINTR
(10004)
Interrupted function call.
A blocking operation was interrupted by a call to WSACancelBlockingCall.

WSAEINVAL
(10022)
Invalid argument.
Some invalid argument was supplied (for example, specifying an invalid level to the
setsockopt function). In some instances, it also refers to the current state of the socket – for
instance, calling accept on a socket that is not listening.

WSAEISCONN
(10056)
Socket is already connected.
A connect request was made on an already connected socket. Some implementations also
return this error if sendto is called on a connected SOCK_DGRAM socket (For
SOCK_STREAM sockets, the to parameter in sendto is ignored), although other
implementations treat this as a legal occurrence.

WSAEMFILE

 13

(10024)
Too many open files.
Too many open sockets. Each implementation may have a maximum number of socket
handles available, either globally, per process, or per thread.

WSAEMSGSIZE
(10040)
Message too long.
A message sent on a datagram socket was larger than the internal message buffer or some
other network limit, or the buffer used to receive a datagram was smaller than the datagram
itself.

WSAENETDOWN
(10050)
Network is down.
A socket operation encountered a dead network. This could indicate a serious failure of the
network system (that is, the protocol stack that the Windows Sockets .dll runs over), the
network interface, or the local network itself.

WSAENETRESET
(10052)
Network dropped connection on reset.
The connection has been broken due to keep-alive activity detecting a failure while the
operation was in progress. It can also be returned by setsockopt if an attempt is made to set
SO_KEEPALIVE on a connection that has already failed.

WSAENETUNREACH
(10051)
Network is unreachable.
A socket operation was attempted to an unreachable network. This usually means the local
software knows no route to reach the remote host.

WSAENOBUFS
(10055)
No buffer space available.
An operation on a socket could not be performed because the system lacked sufficient buffer
space or because a queue was full.

WSAENOPROTOOPT
(10042)
Bad protocol option.
An unknown, invalid or unsupported option or level was specified in a getsockopt or
setsockopt call.

WSAENOTCONN
(10057)
Socket is not connected.
A request to send or receive data was disallowed because the socket is not connected and
(when sending on a datagram socket using sendto) no address was supplied. Any other type of
operation might also return this error – for example, setsockopt setting SO_KEEPALIVE if
the connection has been reset.

WSAENOTSOCK
(10038)
Socket operation on non-socket.
An operation was attempted on something that is not a socket. Either the socket handle
parameter did not reference a valid socket, or for select, a member of an fd_set was not valid.

WSAEOPNOTSUPP
(10045)
Operation not supported.
The attempted operation is not supported for the type of object referenced. Usually this occurs
when a socket descriptor to a socket that cannot support this operation, for example, trying to
accept a connection on a datagram socket.

WSAEPFNOSUPPORT
(10046)
Protocol family not supported.
The protocol family has not been configured into the system or no implementation for it
exists. Has a slightly different meaning to WSAEAFNOSUPPORT, but is interchangeable in

 14

most cases, and all Windows Sockets functions that return one of these specify
WSAEAFNOSUPPORT.

WSAEPROCLIM
(10067)
Too many processes.
A Windows Sockets implementation may have a limit on the number of applications that may
use it simultaneously. WSAStartup may fail with this error if the limit has been reached.

WSAEPROTONOSUPPORT
(10043)
Protocol not supported.
The requested protocol has not been configured into the system, or no implementation for it
exists. For example, a socket call requests a SOCK_DGRAM socket, but specifies a stream
protocol.

WSAEPROTOTYPE
(10041)
Protocol wrong type for socket.
A protocol was specified in the socket function call that does not support the semantics of the
socket type requested. For example, the ARPA Internet UDP protocol cannot be specified
with a socket type of SOCK_STREAM.

WSAESHUTDOWN
(10058)
Cannot send after socket shutdown.
A request to send or receive data was disallowed because the socket had already been shut
down in that direction with a previous shutdown call. By calling shutdown a partial close of
a socket is requested, which is a signal that sending or receiving or both have been
discontinued.

WSAESOCKTNOSUPPORT
(10044)
Socket type not supported.
The support for the specified socket type does not exist in this address family. For example,
the optional type SOCK_RAW might be selected in a socket call, and the implementation
does not support SOCK_RAW sockets at all.

WSAETIMEDOUT
(10060)
Connection timed out.
A connection attempt failed because the connected party did not properly respond after a
period of time, or the established connection failed because the connected host has failed to
respond.

WSATYPE_NOT_FOUND
(10109)
Class type not found.
The specified class was not found.

WSAEWOULDBLOCK
(10035)
Resource temporarily unavailable.
This error is returned from operations on nonblocking sockets that cannot be completed
immediately, for example recv when no data is queued to be read from the socket. It is a non-
fatal error, and the operation should be retried later. It is normal for WSAEWOULDBLOCK
to be reported as the result from calling connect on a nonblocking SOCK_STREAM socket,
since some time must elapse for the connection to be established.

WSAHOST_NOT_FOUND
(11001)
Host not found.
No such host is known. The name is not an official host name or alias, or it cannot be found in
the database(s) being queried. This error may also be returned for protocol and service queries,
and means the specified name could not be found in the relevant database.

WSA_INVALID_HANDLE
(OS dependent)
Specified event object handle is invalid.
An application attempts to use an event object, but the specified handle is not valid.

 15

WSA_INVALID_PARAMETER
(OS dependent)
One or more parameters are invalid.
An application used a Windows Sockets function which directly maps to a Win32 function.
The Win32 function is indicating a problem with one or more parameters.

WSAINVALIDPROCTABLE
(OS dependent)
Invalid procedure table from service provider.
A service provider returned a bogus procedure table to WS2_32.dll. (Usually caused by one or
more of the function pointers being NULL.)

WSAINVALIDPROVIDER
(OS dependent)
Invalid service provider version number.
A service provider returned a version number other than 2.0.

WSA_IO_INCOMPLETE
(OS dependent)
Overlapped I/O event object not in signaled state.
The application has tried to determine the status of an overlapped operation which is not yet
completed. Applications that use WSAGetOverlappedResult (with the fWait flag set to
FALSE) in a polling mode to determine when an overlapped operation has completed get this
error code until the operation is complete.

WSA_IO_PENDING
(OS dependent)
Overlapped operations will complete later.
The application has initiated an overlapped operation which cannot be completed
immediately. A completion indication will be given at a later time when the operation has
been completed.

WSA_NOT_ENOUGH_MEMORY
(OS dependent)
Insufficient memory available.
An application used a Windows Sockets function which directly maps to a Win32 function.
The Win32 function is indicating a lack of required memory resources.

WSANOTINITIALISED
(10093)
Successful WSAStartup not yet performed.
Either the application hasn't called WSAStartup or WSAStartup failed. The application may
be accessing a socket which the current active task does not own (that is, trying to share a
socket between tasks), or WSACleanup has been called too many times.

WSANO_DATA
(11004)
Valid name, no data record of requested type.
The requested name is valid and was found in the database, but it does not have the correct
associated data being resolved for. The usual example for this is a host name -> address
translation attempt (using gethostbyname or WSAAsyncGetHostByName) which uses the
DNS (Domain Name Server), and an MX record is returned but no A record – indicating the
host itself exists, but is not directly reachable.

WSANO_RECOVERY
(11003)
This is a non-recoverable error.
This indicates some sort of non-recoverable error occurred during a database lookup. This
may be because the database files (for example, BSD-compatible HOSTS, SERVICES, or
PROTOCOLS files) could not be found, or a DNS request was returned by the server with a
severe error.

WSAPROVIDERFAILEDINIT
(OS dependent)
Unable to initialize a service provider.
Either a service provider's DLL could not be loaded (LoadLibrary failed) or the provider's
WSPStartup/NSPStartup function failed.

WSASYSCALLFAILURE
(OS dependent)

 16

System call failure.
Returned when a system call that should never fail does. For example, if a call to
WaitForMultipleObjects fails or one of the registry functions fails trying to manipulate the
protocol/name space catalogs.

WSASYSNOTREADY
(10091)
Network subsystem is unavailable.
This error is returned by WSAStartup if the Windows Sockets implementation cannot
function at this time because the underlying system it uses to provide network services is
currently unavailable. Users should check:

� That the appropriate Windows Sockets DLL file is in the current path.

� That they are not trying to use more than one Windows Sockets implementation
simultaneously. If there is more than one WINSOCK DLL on your system, be sure
the first one in the path is appropriate for the network subsystem currently loaded.

� The Windows Sockets implementation documentation to be sure all necessary
components are currently installed and configured correctly.

WSATRY_AGAIN
(11002)
Non-authoritative host not found.
This is usually a temporary error during host name resolution and means that the local server
did not receive a response from an authoritative server. A retry at some time later may be
successful.

WSAVERNOTSUPPORTED
(10092)
WINSOCK.DLL version out of range.
The current Windows Sockets implementation does not support the Windows Sockets
specification version requested by the application. Check that no old Windows Sockets .dll
files are being accessed.

WSAEDISCON
(10094)
Graceful shutdown in progress.
Returned by WSARecv and WSARecvFrom to indicate that the remote party has initiated a
graceful shutdown sequence.

WSA_OPERATION_ABORTED
(OS dependent)
Overlapped operation aborted.
An overlapped operation was canceled due to the closure of the socket, or the execution of the
SIO_FLUSH command in WSAIoctl.

Built on Monday, August 16, 1999

