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ABSTRACT
Previous research work has identified memory bandwidth as
the main bottleneck of the ubiquitous Sparse Matrix-Vector
Multiplication kernel. To attack this problem, we aim at
reducing the overall data volume of the algorithm. Typical
sparse matrix representation schemes store only the non-
zero elements of the matrix and employ additional indexing
information to properly iterate over these elements. In this
paper we propose two distinct compression methods target-
ing index and numerical values respectively. We perform
a set of experiments on a large real-world matrix set and
demonstrate that the index compression method can be ap-
plied successfully to a wide range of matrices. Moreover,
the value compression method is able to achieve impressive
speedups in a more limited yet important class of sparse
matrices that contain a small number of distinct values.

Categories and Subject Descriptors
E.1 [Data]: Data Structures; E.4 [Data]: Coding and In-
formation Theory—Data compaction and compression; G.4
[Mathematics of Computing]: Mathematical Software
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1. INTRODUCTION
Large sparse matrices are encountered in a wide range

of scientific and engineering problems and most commonly
in the numerical solutions of Partial Differential Equations
(PDE), which frequently involve large sparse systems. Meth-
ods like Conjugate Gradient (CG) and Generalized Mini-
mum Residual (GMRES) [17] that are employed to solve
such problems use the Sparse Matrix-Vector multiplication
(SpMxV) as their basic operation. Sparse matrices, by def-
inition, are populated primarily with zeros and thus special
representation schemes are used to enable efficient storage
and computational operations. These representations usu-
ally store the non-zero values of the matrix with additional
indexing information about the position of these values. In
the rest of the paper we will make a distinction between data
that are used for the representation of the matrix structure
and data that represent the numerical values of the matrix
elements. We will refer to the former as index data and to
the latter as value data.

A =


5.4 1.1 0 0 0 0
0 6.3 0 7.7 0 8.8
0 0 1.1 0 0 0
0 0 2.9 0 3.7 2.9

9.0 0 0 1.1 4.5 0
1.1 0 2.9 3.7 0 1.1


row ptr : ( 0 2 5 6 9 12 16 )

col ind : ( 0 1 1 3 5 2 2 4 5 0 3 4 0 2 3 5 )

Figure 1: Example of CSR Storage Format

One of the most commonly applied storage formats for
sparse matrices is the Compressed Sparse Row (CSR) format
[2, 17], which stores all the non-zero values in contiguous
memory locations (values array) and uses two additional
arrays for indexing information: row_ptr contains the start
of each row within the non-zero elements array and col_ind

contains the column number associated with each non-zero
element. The size of the values and col_ind arrays are
equal to the number of non-zero elements (nnz), while the
size of the row_ptr array is equal to the number of rows
(nrows) plus one. An example of the CSR format for a sparse
6 × 6 matrix is presented in Figure 1. The matrix-vector
multiplication operation is easily implemented for matrices
stored in CSR form (Figure 2).



for ( i =0; i<N; i++)
for ( j=row ptr [ i ] ; j<row ptr [ i +1] ; j++)

y [ i ] += va lues [ j ]∗ x [ c o l i n d [ j ] ] ;

Figure 2: Sparse Matrix-Vector Multiplication for CSR

The working set (ws) of the SpMxV operation consists of
the matrix data described above and the value data of the
two vectors: x and y. Thus, the working set size for the CSR
storage format can be computed by the following formula:

ws = csr size + vectors size =

(nnz × (idx s + val s) + (nrows + 1)× idx s)

+ (nrows + ncols)× val s

where idx size and val size is the memory size required for
the storage of an index and a value respectively. Since for
real-life sparse matrices it holds nnz � nrows, ncols1, it is
clear that the most dominant terms of the working set are
the sizes of the col_ind and values arrays, which both have
nnz elements. In most cases the vectors x and y have less
than 232 elements due to memory size restrictions and thus
a 4-byte integer is used for index storage. Floating point
values, on the other hand, require double precision most of
the times, so the common value for val size is 8 bytes. Un-
der these conditions, the values constitute the larger portion
of the working set by a factor of 2/3, if we consider only the
col_ind and values arrays.

In our recent previous work [5], as well as in related liter-
ature [1], the memory subsystem and more specifically the
memory bandwidth is identified as the main performance
bottleneck of the SpMxV kernel. The above statement can
be supported by the fact that SpMxV performs O(nnz) oper-
ations on O(nnz) amount of data, which means that most of
the data are accessed in a streaming manner and there is lit-
tle temporal locality. Additionally, it should be noted that
this performance problem remains relevant with regard to
modern and emerging microprocessors for two main reasons:
The increasing gap in the performance between memory and
CPU (memory wall problem) and the trend towards multi-
core design, where different processor units share a part of
the memory hierarchy.

The goal of the work presented in this paper is to explore
the design space for methods that reduce the working set
and improve the performance of the SpMxV kernel by al-
leviating the pressure on the memory subsystem. We use
the CSR storage format as our basis and consider two dif-
ferent approaches: reducing the index data and reducing
the value data by compressing the col_ind and values ar-
rays respectively. One challenge in this attempt is that the
overhead imposed by the decompression mechanisms should
not outweigh the benefits of the reduction of the working
set. A secondary, yet important, requirement we set for
these methods is performance predictability. To achieve the
above goal, on one hand we propose a method that com-
presses the indexing structure of the sparse matrix taking
into consideration the distribution of the non-zero elements
in the columns of the matrix and exploiting the distances
between elements rather than using absolute indexes. On
the other hand, we introduce the idea of compression in the

1In our 100 matrix set the nnz elements are on average larger
than the number of nrows and ncols by a factor of 16.

data structure that stores the values of the sparse matrix. To
our knowledge there is no previous research work that aims
at alleviating the memory pressure imposed by SpMxV, by
compressing the floating-point values of the sparse matrix.
Both approaches lead to the proposal of two new storage
formats called CSR Delta Unit (CSR-DU ) for index com-
pression and CSR Value Indexed (CSR-VI ) for value com-
pression and to the corresponding multiplication algorithms
that encapsulate the decompression strategies. Our exper-
imental results show that there exist opportunities for ac-
celerating the performance of SpMxV using compression in
both cases. It should be noted that the objective of this
work is not limited to the proposal of compression methods,
but additionally aims to explore future directions, by un-
derstanding the issues at hand and investigating the various
tradeoffs. The rest of the paper is organized as follows: Sec-
tions 2 and 3 present techniques for reducing the size of the
index and value data respectively. Section 4 contains the
results of a performance evaluation of the SpMxV kernel for
the aforementioned methods. Section 5 discusses previous
work and Section 6 discusses overall conclusions and direc-
tions for future work.

2. INDEX COMPRESSION

2.1 Motivation
As discussed above, the standard CSR format stores the

column index of each non-zero element in the col_ind ar-
ray using a 4-byte integer. A lot of research papers pro-
pose methods that result in the reduction of this array by
exploiting contiguous non-zero elements within the matrix.
For example the Block Compressed Sparse Row (BCSR) for-
mat [15, 8] reduces the index data by keeping only one index
for each k × l dense subblock of the matrix. Our approach
for the compression of index data is based on the general
premise that there exist parts within sparse matrices ex-
hibiting some level of density without necessarily containing
contiguous non-zero elements. These parts can contribute
significantly to the storage volume reduction of the sparse
matrix indexing data. As presented in [23], delta encoding
can be used to reveal the highly redundant nature of the
col_ind array. Each delta, defined as the difference of the
current index with the previous one, is positive and less or
equal than its corresponding column index. Consequently,
parts of a sparse matrix that exhibit density allow for their
corresponding delta values to be stored in less than 4-byte
integers, leading to the reduction of the index data size.

Instead of encoding each delta value to use only the nec-
essary number of bytes, we propose a more coarse grain
approach in which the matrix is divided into units with a
variable number of elements. For each of these units the
maximum delta value is calculated and a size that can rep-
resent this value is selected for all the delta values of the
unit. This technique enables for innermost loops with mini-
mum overheads by sacrificing some space. Normally, if each
delta value was encoded separately, the innermost loop of
the SpMxV kernel would contain branches that might lead
to branch mispredictions on execution time and thus signif-
icantly degrade the performance of the kernel. It should be
noted that an important factor for the performance of this
approach lies in the choice of the unit size. If it is too small,
the overhead introduced by the method will dominate the
performance gain from the compression. On the contrary, if



the unit size is large, there will statistically be less oppor-
tunities for compression, because a single large delta value
will enforce big storage requirements for the whole unit.

Although this is a simple approach, it demonstrates a
more abstract strategy for exploiting patterns in the struc-
ture of sparse matrices. Ideally, the index data, which con-
stitute the structure of the matrix, could be mapped directly
to optimized code for the efficient execution of the required
operations in the matrix. The concept of units could be ex-
tended to support more types of regularities, thus providing
a number of advantages towards this direction: (a) It can
be used to exploit local regularities in specific areas of the
matrix, (b) It operates on a coarse grain level and thus it
can effectively minimize the introduced overhead by select-
ing sufficiently large sizes and (c) it can bound the search
space for regularities or patterns and assure that the com-
pression procedure will not exceed the available resources
(e.g. time or storage). Simple examples of types of regu-
larities that can be exploited for performance improvements
are matrix areas with sequential or diagonal elements.

2.2 Delta unit storage format
We will refer to our proposed format as CSR-DU for CSR

Delta Unit. In CSR-DU the col_ind and row_ptr arrays of
CSR are replaced by a single byte-array called ctl. This ar-
ray contains all the necessary indexing information for each
unit, which consists of four sections: uflags, usize, ujmp

and ucis. Both uflags and usize have size of 1 byte and
they identify the type of the unit and its size respectively.
ujmp is a variable length integer that denotes the distance of
this unit’s column index from the previous one, while ucis

is an array of usize− 1 elements, which contains the delta
values of the column indices of this unit. In an analogy to
network packets, one could say that uflags and usize con-
stitute the header, while ujmp and ucis the payload. In the
current version of CSR-DU there are four types of units sup-
ported, one for each integer type size: 8, 16, 32 and 64 bits.
Additionally there is an indicator in the uflags variable that
marks the beginning of a new row.

XXXXXXXXXunit
sections

uflags usize ujmp ucis

0 u8, NR 2 0 1
1 u8, NR 3 1 2,2
2 u8, NR 1 2 -
3 u8, NR 3 2 2,1
4 u8, NR 3 0 2,1
5 u8, NR 4 0 2,1,2

Table 1: Example of the information included in the ctl

structure for the matrix presented in Fig. 1

An example of the information included in the ctl struc-
ture is given in Table 1, which shows the units that represent
the indexing information of the sparse matrix of Figure 1.
There are totally six units each of which has delta values
that are stored in 1 byte (u8) and include a marker for the
existence of a new row (NR). A flowchart and a simplified
code snippet for the SpMxV operation for the CSR-DU for-
mat is presented in Figure 3. First the uflags and usize

variables are extracted from the ctl array and if this unit
belongs in a new row, the appropriate initializations are per-

formed. Next, the ujmp distance is extracted and the proper
multiplication is executed based on the type of the unit,
which is encoded in uflags. Since, for the great majority of
the matrices, there is no need for 64-bit column indices and
thus the unit type for 64-bit sized deltas can be effectively
omitted, it is marked with dashed lines in the flowchart.

In general the compression of a matrix can be performed
either “off-line” or at run-time. In the first scenario the cost
of the compression procedure is negligible because the com-
pression needs to be done only once and a specialized disk
storage format can be used to allow for fast loading of the
matrix in memory. However, if the compression needs to be
performed at run-time the cost should not be high enough to
outweigh the benefits. The decision of whether a compres-
sion scheme can be applied at run-time depends on the appli-
cation (e.g. the number of the SpMxV iterations that need
to be performed). Nevertheless, we argue that CSR-DU is
suitable for run-time deployment since the compression pro-
cedure has the same complexity with CSR parsing (O(nnz))
and can be performed in one pass with no backtracking using
only local information for each unit.

2.3 Implementation Details
In this section we discuss some implementation details

for the CSR-DU format. The information about the type
of each unit is encoded in uflags in the form of bitflags.
The basic bits used are presented in Table 2. It should be
noted that uflags size has been deliberately chosen to be
larger than strictly needed for this method to be able to
support various future extensions and enhancements. The
usize field encodes the size of this unit and thus the maxi-
mum size that can be represented is 256 elements. The ujmp

field is a variable byte length integer that is always positive
and encodes the distance between the column index of the
first element of the unit and the column index of the previ-
ous element. In this way the delta values of two dense areas
with large distance between them can be encoded efficiently.
For the implementation of these variable length positive in-
tegers we used a simple scheme where the integer’s bitstring
is divided in parts of 7 bits. These parts are stored in con-
secutive bytes, in which the MSB is used to mark the last
byte of the integer.

Bits Description
0-1 These bits encode the size of the delta column

index values: 00 → 1 byte, 01 → 2 bytes, 10 →
4 bytes, 11→ 8 bytes

2 new row bit, which designates that the current
unit is on a new row

Table 2: Basic bits and their corresponding description for
uflags

The compression of the matrices is a straightforward pro-
cedure: the elements are scanned one by one and put into
buffers along with their indexing information until it is de-
cided that a unit ends by an external algorithm. When this
happens, the ctl and values arrays are filled with the ap-
propriate values. A minor issue that arose from this strategy
was that since the size of the ctl array is not known be-
forehand, we needed to implement a dynamic growing array
structure. Moreover, we used a simple algorithm for deter-



f l a g s = c t l g e t u 8 ( c t l ) ;
s i z e = c t l g e t u 8 ( c t l ) ;
i f ( f l ags new row ( f l a g s ) ){

y indx++; x indx =0;
}
x indx += c t l g e t j m p ( c t l ) ;
switch ( f l a g s t y p e ( f l a g s ) ){

case CSR DS U8 :
for ( ; ; ) {

y [ y indx ] += (∗ va lues++) ∗ x [ x indx ] ;
i f (−− s i z e == 0)

break ;
x indx += c t l g e t u 8 ( c t l ) ;

}
break ;

case CSR DS U16 :
. . .

}

Figure 3: Flowchart and code snippet for the SpMxV kernel for CSR-DU

mining the end of the units, in which a unit is finalized only
when its size is full, or a new row is detected. This algorithm
can be easily extended to support more elaborate schemes.
One such scheme, for example, would dictate to finalize a
unit before the delta value of a new element increases the
delta storage size, if the unit has more than a predefined
number of elements.

Finally, we applied a number of optimizations to the mul-
tiplication kernel. First we had to explicitly direct the com-
piler to write the y[i] value into memory only at the end
of each row processing and not in every iteration. Addi-
tionally, since the access of unaligned variables may cause
performance problems, we aligned the ucis sections in the
ctl array to their corresponding size by applying padding,
so that the accesses of delta indices are performed in an
aligned manner.

3. VALUE COMPRESSION

3.1 Motivation
Although a lot of discussion has been made concerning the

distribution of the non-zero elements within the sparse ma-
trix (e.g. symmetric, non-symmetric, structured, unstruc-
tured [17] etc.), to our knowledge, no attention has been
paid on the content of the matrix in terms of floating-point
values. As it was pointed out previously, in the typical case,
the values constitute the larger part of the working set of
a CSR matrix, because they require 64-bit storage. Hence,
there is much more to gain from the compression of the
values than the indices in terms of working set reduction.
Nevertheless, the compression of floating point values is not
as straightforward as integers, because floating point arith-
metic operations produce rounded results. However, we have
observed that there is a significant number of matrices in our
experimental set in which only a small portion of their to-
tal values are unique. This redundancy can be exploited by
storing only the common values and pointers to them in-
stead of the nnz values, which will lead to the reduction of
the working set, if the total-to-unique values ratio is high.
Consequently, a considerable reduction will lead to perfor-
mance improvement, despite the overhead induced by the

indirect access of each value.

3.2 Value indexed storage format
In this section we describe a simple scheme for compress-

ing the size of the values of a sparse matrix, which includes a
small number of unique values relative to the total non-zero
elements (nnz). In our proposed format, called CSR-VI for
CSR Value Indexed, the values array of CSR is replaced
with two arrays: vals_unique and val_ind. The first con-
tains the unique values of the matrix and the second the
index of the value in the vals_unique array for each of the
nnz matrix elements. An example of this value structure
is presented in Figure 4, which contains the values of the
matrix presented in Figure 1.

( 0 1 2 3 4 1 5 6 5 7 1 8 1 5 6 9 )

( 5.4 1.1 6.3 7.7 8.8 2.9 3.7 9.0 4.5 1.1 )vals unique:

val ind:

Figure 4: Example of the value indexing structure for the
CSR-VI format for the matrix presented in Figure 1

The SpMxV kernel implementation for CSR-VI is pre-
sented in Figure 5 and can be easily derived from the CSR
case by replacing the direct access of values with an indirect
access of vals_unique based on the value of val_ind. While
the resulting code includes an additional memory reference
for each of the nnz elements of the matrix, it will lead to
fewer cacheline transfers from the main memory when the
number of unique values is relatively small. It should be
noted that the indirect access to the values array induces
additional overhead in terms of execution instructions and
thus a reduction of the working set will not necessarily lead
to an improvement in performance.

The practice of this method is to replace a large number
of numeric values, with the same number of indices and a
much smaller number of values. The working set reduction
is achieved because only a small number of values needs to
be addressed and thus the storage of an individual index is
significantly less than the storage of an individual numerical



for ( i =0; i<N; i++)
for ( j=row ptr [ i ] ; j<row ptr [ i +1] ; j++){

va l = va l s un ique [ v a l i n d [ j ] ] ;
y [ i ] += val ∗x [ c o l i n d [ j ] ] ;

}

Figure 5: SpMxV kernel for the CSR-VI storage format

value. On a second level, this may lead to more optimization
opportunities by compressing these indices. Nevertheless, a
scheme like delta encoding is not as suitable as in the com-
pression of col_ind, because the access in the vals_unique

is random and the delta values can be negative. Hence, we
chose a more conservative approach, in which the size of the
indices is determined by the size of the vals_unique array,
which effectively is the maximum value of the val_ind’s ele-
ments. Although this approach is not optimal with regard to
the compression of the value indices, it has minimum over-
head, because it does not need additional branches, which
can be the source of performance degradation. The compres-
sion procedure of CSR-VI has similar properties with that
of CSR-DU: its complexity is O(nnz) and can be performed
in a single pass and without backtracking if the maximum
value of the val_ind’s element is known beforehand.

3.3 Implementation Details
The parsing for the creation of CSR-VI matrices is simi-

lar to the one used for CSR. The difference is that CSR-VI
requires a method for detecting the common values, and
finding their corresponding index in the vals_unique array.
Our implementation is based on a hash table, in which the
corresponding index is stored using the 64-bit floating point
number as a key. So, if a numerical value exists in the hash
table it means that this value has been encountered before
and its index in the vals_unique is the corresponding value
of the hash table. If a numeric value does not exist in the
hash table, it is inserted in both the vals_unique array and
the hash table. Its index and the hash table value is the
number of elements of the vals_unique array prior to its
insertion. Again, we have optimized the SpMxV implemen-
tation to write the resulting y[i] to memory only at the end
of each row processing.

4. EXPERIMENTAL EVALUATION

4.1 Experimental Setup
Our experiments were conducted on an Intel Core 2 Xeon

(Woodcrest) processor with 2.6 GHz clock speed, two 32 KB
8-way caches for instructions and data and a unified 4 MB
16-way L2 cache. The system was running a 64-bit ver-
sion of linux and the compiler used was version 4.2 of gcc
with the optimization flag -O3. All the results are expressed
in terms of speedup with regard to the CSR SpMxV ker-
nel with 32-bit indices and double precision (64-bit) values.
The CSR version of the SpMxV kernel was also optimized
to write the y[i] value at the end of each innermost loop,
which led to an average performance improvement of 5%
for the whole matrix set. The experiments were conducted
by measuring the execution time of 128 consecutive SpMxV
operations with randomly created x vertices. It should be
noted that we made no attempt to artificially pollute the
cache after each iteration, in order to better simulate iter-

ative scientific application behavior, where the data of the
matrices are present in the cache because either they have
just been produced or they were recently accessed.

4.2 Matrix set
As a starting point for our experimental evaluation we use

a set of 100 matrices (see Table 4). The majority of them
was selected from Tim Davis’ collection [4]. The first matrix
is a dense 1000 × 1000 matrix, matrices 2-45 are also used
in SPARSITY[6], matrix #46 is a 100000× 100000 random
sparse matrix with roughly 150 non-zero elements per row,
matrix #87 is a 5-pt stencil finite-difference matrix for a
202 × 202 × 102 regular grid created by SPARSKIT [16],
while the rest are the largest rectangular matrices of the
collection both in terms of non-zero elements and number
of rows. Note that we made no attempt to select matrices
with a particular structure of non-zero elements. The reader
is referred to [4] for additional information on the specific
characteristics of each matrix.

As shown in [5], two classes of matrices can be distin-
guished based on SpMxV performance. Matrices with a
working set that fits into the L2 cache, experience only
compulsory misses and exhibit a thoroughly different per-
formance behavior compared to matrices whose working set
is larger than the L2 cache size and may experience capacity
misses. Since in this work we are mainly concerned with ma-
trices that perform poorly due to memory bandwidth lim-
itation, we are only considering matrices from the second
class. More specifically, in order to also cover border-line
cases (e.g. memory accesses due to conflict misses) we re-
ject matrices whose working set is less than 3/4 of the L2
cache size, which in our case means ws > 3 MB. Addition-
ally, we also remove the dense matrix (#1) from our set to
obtain more accurate average speedup results. The resulting
set consists of the following 77 matrices: 2-13, 15, 17, 21,
25, 26, 36, 40-42, 44-53, 55-100 and we will refer to it as the
initial matrix set.

4.3 CSR-DU
As noted in Section 2.1, small unit sizes are bound to lead

to degraded performance in CSR-DU due to the loop over-
head they induce. The class of matrices with a large percent-
age of small rows will suffer from this problem, since units
cannot span multiple rows. In our experiments we used a
simple qualitative criterion to filter those matrices out from
our initial matrix set: we rejected matrices in which 85%
percent or more of their elements are members of rows with
size smaller or equal than 6 elements. The resulting rejected
set consisted of 13 matrices which exhibited significant slow-
down or similar performance to the CSR benchmark. The
resulting speedup values for the remaining 64 matrices are
presented in Figure 6. The number in the top of the bars is
the percentage of the matrix size reduction relative to the
original CSR size ((sizeCSR − sizeCSR−DU )/sizeCSR).

The mean speedup value for our set is 8.1%. There ex-
ist 53 matrices which exhibit speedup and 5 that exhibit
slowdown. Additionally, the larger speedup and slowdown
are 18.9% for matrix #11 and 8.1% for matrix #5 respec-
tively. Moreover, the dense matrix which constitutes the up-
per limit on the performance gain for this method, achieved
a speedup of 1.35. An initial observation is that there does
not seem to be a absolute correlation between the size reduc-
tion and the speedup, which leads to the conclusion that the



2 3 4 5 6 7 8 9 10 11 12 13 15 17 21 26

matrix id

0.7

0.8

0.9

1.0

1.1

1.2

1.3
s
p
e
e
d
u
p 16.8 20.8 23.4

22.4

17.1 16.9
21.7 16.8 20.5

24.9

18.5
23.0 19.0 24.9

24.8 21.6

2 3 4 5 6 7 8 9 10 11 12 13 15 17 21 26

matrix id

0.7

0.8

0.9

1.0

1.1

1.2

1.3
s
p
e
e
d
u
p 16.8 20.8 23.4

22.4

17.1 16.9
21.7 16.8 20.5

24.9

18.5
23.0 19.0 24.9

24.8 21.6

40 41 42 44 46 47 48 49 50 52 53 55 56 58 59 60

matrix id

0.7

0.8

0.9

1.0

1.1

1.2

1.3

s
p
e
e
d
u
p 17.2

24.7 24.9
21.4

16.7
22.1

17.0
17.3 16.7

18.8
16.6

18.1 16.4
21.4 19.3 17.0

40 41 42 44 46 47 48 49 50 52 53 55 56 58 59 60

matrix id

0.7

0.8

0.9

1.0

1.1

1.2

1.3

s
p
e
e
d
u
p 17.2

24.7 24.9
21.4

16.7
22.1

17.0
17.3 16.7

18.8
16.6

18.1 16.4
21.4 19.3 17.0

61 64 65 66 67 68 69 71 72 74 76 77 78 81 82 83

matrix id

0.7

0.8

0.9

1.0

1.1

1.2

1.3

s
p
e
e
d
u
p

11.1

18.0
17.1 16.8

23.0

18.1
16.9 12.3 6.7 8.1

16.9 17.0
15.9 19.1

16.6 16.8

61 64 65 66 67 68 69 71 72 74 76 77 78 81 82 83

matrix id

0.7

0.8

0.9

1.0

1.1

1.2

1.3

s
p
e
e
d
u
p

11.1

18.0
17.1 16.8

23.0

18.1
16.9 12.3 6.7 8.1

16.9 17.0
15.9 19.1

16.6 16.8

84 85 86 87 88 89 91 92 93 94 95 96 97 98 99 100

matrix id

0.7

0.8

0.9

1.0

1.1

1.2

1.3

s
p
e
e
d
u
p

16.5

16.5
9.9

15.9
16.8 21.5

9.4
15.3

2.2 1.5

16.7 16.9
16.7 16.4

16.7 13.0

84 85 86 87 88 89 91 92 93 94 95 96 97 98 99 100

matrix id

0.7

0.8

0.9

1.0

1.1

1.2

1.3

s
p
e
e
d
u
p

16.5

16.5
9.9

15.9
16.8 21.5

9.4
15.3

2.2 1.5

16.7 16.9
16.7 16.4

16.7 13.0

Figure 6: Speedups for the CSR-DU method

size reduction is not always capable of assuring significant
performance improvement, due to other factors affecting the
overall performance (e.g. branch mispredictions).

Although the speedups of the CSR-DU method are rel-
atively small, we argue that a number of factors make this
approach relevant. First, it seems to generally satisfy the re-
quirement for stability and performance predictability, since
few matrices exhibit significant slowdowns in our consider-
ably rich set. Additionally, as memory size increases with a
very large rate, there will soon be matrices that can fit into
memory and require more than 32-bit indices for the stor-
age of their column indices. In that case the performance
gain from index compression would be significantly higher,
because the index data would double in size. In order to
quantify the performance gain we repeated the experiments
for our matrix set using 64-bit indices. As expected, the in-
crease in the working set led to a performance drop in CSR
by 36%, hence CSR-DU compared to the 64-bit indexed ver-
sion of CSR achieves an average 44.1% performance gain.
Finally, we argue that in the case of multi-core architec-
tures, where a number of processing elements share a part
of the memory subsystem, this approach would greatly ben-
efit a multithreaded implementation of the SpMxV kernel,
because of the impact of the memory contention imposed by
multiple SpMxV threads.

4.4 CSR-VI
In order to elaborate on the applicability of the CSR-VI

method to a given matrix, we consider the total-to-unique
(ttu) values ratio, which is defined as the division of the total
(nnz) values by the number of the values that are unique in
the matrix. A high total-to-unique values ratio means that
this matrix is fitting for the CSR-VI method, while a small
one means that this method will most likely result in slow-
down. We present experimental results for those matrices
of our initial set that satisfy the ttu > 5 requirement. The
resulting matrix set comprises of 30 matrices. The speedups
obtained for each matrix are presented in Figure 7, along
with the percentage of the matrix size reduction relative to
the original CSR size, which is marked on top of each bar.
Additionally, the speedup for each matrix relative to its ttu
value is presented in Figure 8.
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Figure 7: Speedups for the CSR-VI method

The average speedup value for our set is 21.5%. Out of
the 30 matrices 4 result in slowdown, one of them being the
artificial random matrix #42. The largest speedup (74.1%)
appears on matrix #85, while the largest slowdown is 31.1%
and appears on matrix 84. Moreover, there is a strong cor-
relation between the ttu ratio and the performance of the
CSR-VI, as can be seen in Figure 8. Specifically, for ttu
values larger than 103, the speedup is increased almost lin-
early in a logarithmic scale, until it reaches 106. Although
the CSR-VI method is not a universal method and cannot
be applied to all matrices indiscriminately, there is a large
class of matrices which can benefit significantly from it. Ad-
ditionally, the method is quite simple and can be easily im-
plemented for scientific problems that are known to produce
sparse matrices with large ttu ratios.

5. RELATED WORK

5.1 Sparse matrix formats and SpMxV kernel
optimization

There is a great deal of work regarding the efficient rep-
resentation of sparse matrices, not only in terms of required
storage but also in terms of computational performance for
common operations, such as the SpMxV kernel. Besides
CSR, which has been extensively discussed in Section 1,
there are a number of other commonly used formats like:
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Figure 8: Speedups of the CSR-VI method associated with
the total-to-unique values ratio

BCSR (Blocked-CSR), JD (Jagged Diagonal), CDS (Com-
pressed Diagonal Storage) and Ellpack-Itpack [2, 17]. More-
over, due to the importance of the SpMxV kernel there are
numerous works that propose methods for its efficient ex-
ecution. Toledo [19] evaluates a number of optimization
techniques that mainly target RISC processors: (a) pre-
computing addresses for indirect addressing (b) reordering
the matrix to reduce its bandwidth2 (c) representing non-
zeros in small dense blocks, and (d) prefetching to allow
cache-hits-under-miss processing. White and Sadayappan
[22] state that besides data locality another crucial issue for
the performance of SpMxV is small line lengths, which are
frequently encountered in sparse matrices and may drasti-
cally degrade performance due to ILP reduction. For this
reason, the authors propose alternative storage schemes that
enable unrolling. Pinar and Heath [15] refer to irregular
and indirect accesses on x as the main factors responsible
for performance degradation. Focusing on indirect accesses,
the application of one-dimensional blocking with the BCSR
storage format is proposed in order to drastically reduce the
number of indirect memory references. In addition, a column
reordering technique which enables the construction of larger
dense sub-blocks is also proposed. With a primary goal to
exploit reuse on vector x, Im and Yelick propose the applica-
tion of register blocking, cache blocking, and reordering [7,
6, 8]. Moreover, their blocked versions of the algorithm are
capable of reducing loop overheads and indirect referencing
while increasing the degree of ILP. Additionally, the authors
also propose a heuristic to determine an efficient block size.
Vuduc et al. [20] estimate the performance bounds of the al-
gorithm and evaluate the register blocked code with respect
to these bounds. Furthermore, they propose a new approach
to select near-optimal register block sizes. Mellor-Crummey
and Garvin [12] accentuate the problem of short row lengths
and propose the application of the unroll-and-jam compiler
optimization in order to overcome this problem. Pichel et
al. [13] model the inherent locality of a specific matrix with
the use of distance functions and improve this locality by
applying reordering to the original matrix. The same group
proposes also the use of register blocking to further increase
performance in [14]. Vuduc et al. [21] extend the notion of
blocking in order to exploit variable block shapes by decom-

2the bandwidth of a sparse matrix is the maximum distance,
in diagonals, between two non-zero elements of the matrix.

posing the original matrix to a proper sum of submatrices
storing each submatrix in a variation of the BCSR format.
Finally, Silva and Wait [18] propose an alternative storage
format where both the indices and the numerical values are
kept in a single data structure to reduce cache misses.

5.2 Index Compression
A large number of research works on SpMxV optimiza-

tion achieve considerable performance improvement due to
reduction of the index data of the sparse matrix. Typical
examples are blocking methods such as BSCR and VBR [16]
that store only per-block index information, which leads to
index data reduction and alleviates the pressure from the
memory subsystem. Nevertheless, only a small number of
works in the literature target explicitly the compression of
the index data. Lee et al. in [11] exploit matrix symme-
try by storing only half the matrix (reducing significantly
both value and index data) and Williams et al. [24] apply a
simple index reduction technique, in which 16-byte indices
are used when it is possible. A notable work regarding in-
dex compression in the SpMxV context is [23] which, to our
knowledge, is the first to apply a delta encoding scheme. In
this paper, Willcock and Lumsdaine propose two methods:
DCSR which compresses the column indices using a byte-
oriented delta scheme and RPCSR, which generates matrix-
specific dynamic code by applying aggressive compression
on column indices patterns. We will focus our comparison
on the DCSR method which operates on the same level as
CSR-DU. DCSR encodes the matrix using a set of six com-
mand codes for operations such as changing rows, perform-
ing multiplication and increasing the current value of the
column index, in order to represent indices larger than one
byte. A problem with this approach is that, due to the fact
that each delta value must be decompressed separately, the
resulting SpMxV code will more likely suffer from frequent
mispredicted branches that lead to performance degrada-
tion. This problem is dealt by encoding patterns of frequent
instances of six of these commands into groups that are ex-
ecuted sequentially without branches. However, a number
of problems are created by this approach: (a) These fre-
quently encountered patterns are matrix specific and thus
a technique such as dynamic code generation needs to be
employed to avoid the danger of branch misprediction costs
for the generic case. (b) Matrices that exhibit large varia-
tion with regard to the patterns encountered cannot be opti-
mized with the use of common patterns. (c) This method is
quite complex and needs significant implementation effort.
For example, as the authors state, they needed architecture
specific implementations, some of which were written in as-
sembly language.

The proposed CSR-DU method tackles the problem of
branch misprediction performance penalties in the design
level and not in the implementation, by using a more coarse
grain approach than encoding each delta value separately.
This allows for a much simpler and general implementation,
while sustaining a small performance gain gap with regard
to the DCSR method. A direct comparison between the
two methods is difficult since we are not aware of all the
implementation details of the DCSR method. We present
some rough comparison data between CSR-DU and DSCR
in Table 3. We use the speedups reported in [23] for the
Opteron architecture for the DSCR and results for the CSR-
DU method from experiments conducted in a similar sys-



tem3. The matrix set we used is the one presented in [23],
but without the symmetric matrices, which were specifically
optimized and the stomach matrix which has many short
rows.

matrix DSCR (%) CSR-DU (%)

cage12 1.68 11.36
cage13 -1.03 8.31
cage14 -3.13 2.34
e40r5000 26.35 9.55
lhr71 18.85 8.43
li 14.87 9.38
pre2 3.57 2.51
rim 17.28 10.57
stomach 19.99 14.45
twotone 7.21 8.07
xenon2 16.79 16.25

average 11.13 9.20

Table 3: Speedups for an Opteron system for the DSCR and
for the CSR-DU methods

Although there can be no direct comparison between these
results, a rough conclusion is that the performance gap be-
tween the two methods is small. Thus, we argue that CSR-
DU provides an antagonistic alternative method for index
compression and especially when a simple or portable im-
plementation is required, which is also supported by the
fact that there exist matrices, for which CSR-DU outper-
forms DCSR. Moreover, we argue that CSR-DU can pro-
vide a more fitting starting basis for implementing a more
advanced system which will support different types of units
as modules. Each of these modules would provide functions
for detection and dynamic code generation for different types
of possible regularities met in the matrix and thus allow for
a wide variety of optimizations. An indication to the above
is the fact that the RPCSR method uses groups of intervals,
which are similar to the concept of units used in CSR-DU.

5.3 Value Compression
To our knowledge there is little previous work that tar-

gets the compression of the matrix numerical values in the
context of SpMxV optimization, despite the fact that in the
common scenario these value constitute the largest part of
the working set data. A number of works discuss the usage of
single precision numerical values as an optimization method.
For example Keyes in [9], elaborating on performance im-
provements on PDE solvers, proposes the use of lower pre-
cision representation for poorly known data like precondi-
tioner matrix coefficients, which do note pose problems in
the convergence procedure. Moreover, there are works such
as [10] that propose mixed precision algorithms, which de-
liver double precision arithmetic, while performing the bulk
of the work in single precision. Although these works focus
more on the exploitation of computational characteristics
of modern architectures (e.g. vectorization), they also con-
tribute significantly to the reduction of the required mem-
ory bandwidth. Other related scientific work include general
compression methods for double precision floating point val-
ues. For example Burtscher in [3] proposes such a method

32× Dual Core AMD Opteron(tm) 265 Processors, 64-bit
2.6.23 linux operating system and version 4.2 of gcc

which is based on value predictors and it is mostly aimed at
scientific data transfers in the context of distributed mem-
ory architectures, such as clusters. Although methods as
this impose great overhead and cannot be directly applied
in the context of SpMxV kernel optimization, they can serve
as guidelines for the development of more advanced schemes
for value compression.

6. CONCLUSIONS – FUTURE WORK
Guided by previous research that identifies memory band-

width as the main performance bottleneck of the SpMxV
kernel [1, 5] we propose two methods for the compression of
sparse matrices. The first, called CSR-DU, performs com-
pression on the matrix index data, while the second, called
CSR-VI, targets the numerical values of the matrix. Both
achieve significant speedups over a substantial number of
matrices. More specifically, the CSR-DU method exploits
the redundancy of col_ind values using a delta encoding
scheme. It can be applied successfully to most matrices that
do not contain a large number of short rows and thus it can
be characterized as a general method. The performance gain
achieved by the use of this method depends on the percent-
age of the index data size over the total matrix size. In
the case of 32-bit indexed matrices, which contain 64-bit
numerical values this percentage is close to 1/3 and thus
the performance gain is bound by this factor. Nevertheless,
we argue that matrices which require 64-bit addressing for
their indices will be able to fit into the main memory of near-
future machines and thus index compression methods such
as CSR-DU will achieve significantly higher speedups and
become more important. Numerical values of sparse matri-
ces are more difficult to compress than indices for two main
reasons: (a) The constrained regularity they exhibit and
(b) The limits imposed by the nature of the representation
of floating point numbers. The CSR-VI method proposed
in this paper exploits redundancy in the values of matri-
ces that contain a large number of common elements, using
indirect access. Although the requirement for a large num-
ber of common values limits the generality of this method,
we have found that it can be applied to a large number of
practical matrices achieving substantial speedups. We have
deployed and evaluated our methods using the CSR storage
format but they are generic enough to be applied to other
formats as well. However, the employment of the CSR-DU
method to a storage scheme with reduced index data (e.g.
BSCR) would not normally lead to a performance improve-
ment. As a general conclusion, we argue that a method of
compression can be beneficial for the SpMxV kernel as long
as the decompression method does not burden the processor
with additional branches that are irregular and thus hard to
predict. This is due to the fact that, as shown in [5], the ker-
nel is very sensitive to extra operations, loop overheads and
branch mispredictions that can easily harm its performance.

As future work we intend to explore various aspects of
the compression schemes presented in this paper. With re-
gard to the CSR-DU method we plan to evaluate various ex-
tensions towards more aggressive optimizations. Examples
include the exploitation of more complex regularities in the
structure of the matrix (e.g sequential or diagonal elements),
the usage of advanced techniques such as automatic code
generation to mitigate branch prediction costs and methods
for performing matrix-wide compression by exploiting regu-
larities in the structure of multiple rows. Furthermore, we



plan to explore optimization opportunities by extending the
CSR-VI method. A scheme similar to delta encoding can
be developed for compressing the CSR-VI indices using the
XOR operation. Additionally, the XOR operation can be
used in a similar way to implement compression for matri-
ces whose values are not equal but their differences are very
small, since a large part of the leading bits used will be com-
mon for all values. Finally, we plan to evaluate the usage of
a combined method where both index and data compression
is applied. Another future work direction is the usage of
compression methods for the optimization of SpMxV kernel
in shared memory parallel architectures such as SMP or mul-
ticore systems. In these systems a large part of the memory
hierarchy is shared and thus the memory bandwidth bottle-
neck is more eminent, due to simultaneous accesses to the
main memory by a number of different processors.
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Matrix nrows nnz ws(MB) uvals Matrix nrows nnz ws(MB) uvals
1.dense 1000 1000000 11.463 30306 51.Hamrle3 1447360 5514242 90.712 53
2.raefsky3 21200 1488768 17.442 671474 52.ASIC 320ks 321671 1827807 27.053 832
3.olafu 16146 515651 6.209 506318 53.Si87H76 240369 5451000 66.966 334180
4.bcsstk35 30237 740200 9.048 735126 54.SiNa 5743 102265 1.280 24317
5.venkat01 62424 1717792 20.849 1626036 55.ship 001 34920 2339575 27.440 1209604
6.crystk02 13965 491274 5.889 472350 56.af 5 k101 503625 9027150 112.913 9027150
7.crystk03 24696 887937 10.633 870155 57.ASIC 680k 682862 3871773 57.333 80211
8.nasasrb 54870 1366097 16.680 589225 58.bcsstk37 25503 583240 7.161 547869
9.3dtube 45330 1629474 19.512 10000 59.bmw3 2 227362 5757996 70.232 4126650
10.ct20stif 52329 1375396 16.738 1017666 60.bundle1 10581 390741 4.673 374610
11.af23560 23560 484256 5.991 310481 61.cage13 445315 7479343 94.088 417
12.raefsky4 19779 674195 8.093 652375 62.turon m 189924 912345 14.063 284875
13.ex11 16614 1096948 12.870 285032 63.ASIC 680ks 682712 2329176 39.677 40708
14.rdist1 4134 94408 1.159 94104 64.thread 29736 2249892 26.315 2085970
15.av41092 41092 1683902 20.054 1199095 65.e40r2000 17281 553956 6.669 374723
16.orani678 2529 90158 1.080 49455 66.sme3Da 12504 874887 10.251 650304
17.rim 22560 1014951 12.045 991013 67.fidap011 16614 1091362 12.807 211502
18.memplus 17758 126150 1.782 51595 68.fidapm11 22294 623554 7.561 88276
19.gemat11 4929 33185 0.474 32524 69.gupta2 62064 2155175 25.848 10000
20.lhr10 10672 232633 2.866 204020 70.helm2d03 392257 1567096 25.416 109526
21.goodwin 7320 324784 3.856 74020 71.hood 220542 5494489 67.086 5048077
22.bayer02 13935 63679 0.995 25541 72.inline 1 503712 18660027 223.155 18016122
23.bayer10 13436 94926 1.343 35815 73.language 399130 1216334 21.533 141504
24.coater2 9540 207308 2.554 168772 74.ldoor 952203 23737339 289.814 21675099
25.finan512 74752 335872 5.270 335867 75.mario002 389874 1167685 20.799 547809
26.onetone2 36057 227628 3.293 14672 76.nd12k 36000 7128473 82.266 4857071
27.pwt 36519 181313 2.772 10000 77.nd6k 18000 3457658 39.913 2367789
28.vibrobox 12328 177578 2.267 23247 78.pwtk 217918 5926171 71.976 5592868
29.wang4 26064 177168 2.525 176 79.rail 79841 79841 316881 5.149 41551
30.lnsp3937 3937 25407 0.366 4176 80.rajat31 4690002 20316253 321.956 3985
31.lns 3937 3937 25407 0.366 4176 81.rma10 46835 2374001 28.062 1223223
32.sherman5 3312 20793 0.301 15096 82.s3dkq4m2 90449 2455670 29.828 74283
33.sherman3 5005 20033 0.325 11027 83.nd24k 72000 14393817 166.097 9731838
34.orsreg 1 2205 14133 0.204 111 84.af shell9 504855 9046865 113.162 968711
35.saylr4 3564 12940 0.216 11 85.kim2 456976 11330020 138.378 17
36.shyy161 76480 329762 5.233 196333 86.rajat30 643994 6175377 82.955 683418
37.wang3 26064 177168 2.525 176 87.fdif 4000000 27840000 394.897 4
38.mcfe 765 24382 0.294 24381 88.sme3Db 29067 2081063 24.370 1552542
39.jpwh 991 991 6027 0.088 14 89.stomach 213360 3021648 38.650 2257584
40.gupta1 31802 1098006 13.172 10000 90.thermal2 1228045 4904179 79.547 4819424
41.lp cre b 9647 260785 3.426 217 91.F1 343791 13590452 162.088 13038962
42.lp cre d 8894 246614 3.240 199 92.torso3 259156 4429042 55.629 3121632
43.lp fit2p 3000 50284 0.673 560 93.cage14 1505785 27130349 339.203 465
44.lp nug20 15240 304800 3.998 2 94.audikw 1 943695 39297771 467.727 37023578
45.apache2 715176 2766523 45.301 40 95.Si41Ge41H72 185639 7598452 90.498 4665454
46.random 100000 14977726 173.314 10000 96.crankseg 2 63838 7106348 82.543 4397887
47.bcsstk32 44609 1029655 12.634 10000 97.Ga41As41H72 268096 9378286 112.439 3597854
48.msc10848 10848 620313 7.306 617922 98.af shell10 1508065 27090195 338.787 10889891
49.msc23052 23052 588933 7.179 575636 99.boneS10 914898 28191660 340.078 40
50.bone010 986703 36326514 434.544 38 100.msdoor 415863 10328399 126.131 9777773

Table 4: Matrix suite including the CSR SpMxV working set (ws) assuming 32-bit indices and 64-bit values and the
number of unique values (uvals) for each matrix


