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The Sparse Matrix-Vector Multiplication (SpMxV) kernel exhibits poor scaling on shared memory
systems, due to the streaming nature of its data access pattern. To decrease memory contention
and improve kernel performance we propose two compression schemes: CSR-DU, that targets the
reduction of the matrix structural data by applying coarse-grained delta-encoding, and CSR-VI,
that targets the reduction of the values using indirect indexing, applicable to matrices with a small
number of unique values. Thorough experimental evaluation of the proposed methods and their
combination, on two modern shared memory systems, demonstrated that they can significantly
improve multithreaded SpMxV performance upon standard and state-of-the-art approaches.
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1. INTRODUCTION

The ineffectiveness of traditional techniques, like frequency scaling and ILP ex-
ploitation, for enhancing processor performance led to a technology shift towards
chip multiprocessor (CMP or multicore) designs, both in terms of commodity prod-
ucts and future research directions [Hennessy and Patterson 2007; Geer 2005]. As a
result, a large number of research efforts target the scalability challenges that arise
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in applications when a large number of processing units operate on a shared memory
hierarchy.

The scalability behavior of an application in a shared memory environment de-
pends on its data access pattern. Applications with no data dependencies and good
temporal locality scale well: each core can work independently using local data re-
siding in its cache, without interfering with the operation of other cores. On the
contrary, applications with streaming access patterns tend to exhibit poor scaling,
due to contention on the memory subsystem.

An important and ubiquitous computational kernel with streaming memory access
pattern is the Sparse Matrix-Vector multiplication (SpMxV). SpMxV is used in a
large variety of applications in scientific computing and engineering. For example,
it is the basic operation of iterative solvers, such as Conjugate Gradient (CG) and
Generalized Minimum Residual (GMRES). CG and GMRES are extensively used
to solve sparse linear systems resulting from the simulation of physical processes
described by partial differential equations [Saad 2003]. Furthermore, SpMxV is a
member of one of the “seven dwarfs”, which are classes of applications that are
believed to be important for at least the next decade [Asanovic et al. 2006].

The distinguishing characteristic of sparse matrices is that they are populated by
a large number of zero elements, making it highly inefficient to perform operations
using typical (dense) array structures. Special storage schemes are used instead,
which target both the sparing storage of the matrix in terms of space, and the
efficient execution of various operations by performing only the necessary actions.
The common approach is to store only the non-zero values of the matrix, and employ
additional indexing information about the position of these values. In this paper a
distinction will be made between data representing matrix structure (index data),
and data representing numerical values (value data).

Our recent work [Goumas et al. 2008], as well as related literature [Anderson et al.
1999], has identified the memory subsystem as the main performance bottleneck of
the SpMxV kernel when executed in a uniprocessor environment. Obviously, if more
processing units access the main memory, this bottleneck will become more severe.
Consequently, it is expected that a multithreaded version of the kernel, targeted for
shared memory architectures, will have poor performance scaling as the number of
utilized cores increases. An approach for alleviating this problem to reduce the data
accessed during the execution of the kernel (working set).

To this direction and using the standard CSR [Barrett et al. 1994; Saad 2003]
sparse matrix storage format as a starting point, we propose two new formats:
CSR-DU and CSR-VI [Kourtis et al. 2008a]. CSR-DU is a general format that
reduces index data volume using coarse-grained delta-encoding for the compression
of column indices. CSR-VI is a specialized format that exploits the data redundancy
of matrices with a large number of common values using indirect value accesses. We
also consider the combination of these two formats (CSR-DUVI), where both indices
and values are compressed. The intrinsic basis of compression is to trade data storage
volume for computation overhead. We argue that as the number of processing cores
that share the memory subsystem increases, this tradeoff will become more beneficial
for the performance of memory bound applications such as SpMxV, even if it results
in degraded performance in the uniprocessor case.
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To evaluate our proposed methods we perform experimental tests over a large
number of matrices. We focus our attention on the scalability issues that arise as
core count increases. Our experimental platform consists of two systems that cor-
respond to the ends of the commodity hardware spectrum regarding memory per-
formance: an SMP system with centralized memory, and a new generation NUMA
system, with a strong architectural focus on memory throughput performance. Our
experimental results confirm that the multithreaded version of the SpMxV kernel
exhibits poor scalability. We compare CSR-DU against CSR and BCSR [Im and
Yelick 2001], which constitutes the most popular optimized format. CSR-DU sig-
nificantly outperforms CSR and BCSR when all available cores participate in the
computation. CSR-VI is able to drastically reduce the working set in a large subset
of our experimental matrix suite and considerably improve performance. Finally, ex-
perimental results for CSR-DUVI demonstrate the effectiveness of the combination
of index and value compression.

The rest of the paper is organized as follows: Section 2 sets the context, by
providing an introduction to issues related to this work. Sections 3 and 4 present the
proposed compression methods, and Section 5 discusses the experimental evaluation
results. Section 6 discusses the related literature, and Section 7 concludes the paper.

2. PRELIMINARIES

2.1 Shared memory architectures

Shared memory architectures with multiple processors (SMPs) have been studied
extensively in the past [Culler and Singh 1999]. The current trend of multicore
processors, along with indications for many-core next-generation processors [Hsu
et al. 2005], has motivated the research community to revisit the performance issues
of shared memory architectures and investigate methods for scaling applications up
to a large number of processing units. The major performance problem of these
architectures is the main memory, which is typically centralized and shared among
all processors.

It is worth mentioning that a difference between multicore processors and classic
SMP systems is that in the former different cores may share a part of the cache hier-
archy (e.g., the L2 or the L3 cache), instead of just the main memory. Cache sharing
is an important factor of the system’s performance and can be either constructive
or destructive, depending on the application and on whether threads scheduled on
the cores that share a cache operate on common data or not.

As core count increases, CPU designers turn to more scalable designs like Non-
Uniform Memory Access (NUMA) architectures where the memory is distributed
on different nodes, connected via a scalable interconnect. For a given CPU, NUMA
memory nodes are characterized as either local, or remote. Accessing a local node
is faster than accessing a remote node. This architecture mitigates the memory
bandwidth bottleneck, since it allows different CPUs to operate on different NUMA
nodes. In general, these systems provide a coherent unified view of memory, and is
up to the operating system or the programmer to distribute data in different nodes
to maximize performance.
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2.2 Sparse matrix formats and the SpMxV operation

The most commonly used storage format for sparse matrices is the Compressed
Sparse Row (CSR) format [Barrett et al. 1994; Saad 2003]. In CSR the matrix is
stored in three arrays: values, row ptr and col ind. The values array stores the
non-zero elements of the matrix in row-major order, while the other two arrays store
indexing information: row ptr contains the location of the first (non-zero) element
of each row within the values array, and col ind contains the column number for
each non-zero element. An example of the CSR format for a 6 × 6 sparse matrix
is presented in Figure 1. The size of the values and col ind arrays are equal to
the number of non-zero elements (nnz ), while the row ptr array size is equal to the
number of rows (nrows) plus one. Other generic formats for sparse matrices are
the Compressed Sparse Column (CSC), which is similar to CSR storing columns
instead of rows, and the Coordinate format (COO), where each non-zero is stored
as a triplet along with matrix location coordinates.

A =















5.4 1.1 0 0 0 0
0 6.3 0 7.7 0 8.8
0 0 1.1 0 0 0
0 0 2.9 0 3.7 2.9

9.0 0 0 1.1 4.5 0
1.1 0 2.9 3.7 0 1.1















row ptr : ( 0 2 5 6 9 12 16 )

col ind : ( 0 1 1 3 5 2 2 4 5 0 3 4 0 2 3 5 )

values : ( 5.4 1.1 6.3 7.7 8.8 1.1 2.9 3.7 2.9 9.0 1.1 4.5 1.1 2.9 3.7 1.1 )

Fig. 1: Example of the CSR storage format.

The SpMxV operation (y = Ax), is the multiplication of a sparse matrix A and
a (dense) vector x, with the result stored in another (dense) vector y. The CSR
implementation for a matrix with N rows is:

for (i=0; i<N; i++)

for (j=row_ptr[i]; j<row_ptr[i+1]; j++)

y[i] += values[j]*x[col_ind[j]];

The working set (ws) consists of the matrix and vector data. Its size is expressed
by the following formula where idx s and val s represent the storage size required
for an index and a value respectively.

ws =

sparse matrix
︷ ︸︸ ︷

(nnz · (idx s+ val s) + (nrows + 1) · idx s)+

vectors
︷ ︸︸ ︷

(nrows + ncols) · val s

Because the majority of real-life sparse matrices satisfy: nnz ≫ nrows, ncols, we
can approximate the above expression by ws = nnz · (idx s+ val s). Commonly, a
4-byte integer is used for index storage, due to memory size restrictions that limit
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x and y vectors to a maximum of 232 elements. Numerical data, however, normally
require double precision. Under these assumptions, i.e., idx s = 4 and val s = 8,
value data constitute the larger portion of the working set by a factor of 2/3. For
this reason, value data compression is expected to have a greater impact to overall
working set reduction.
The 2/3 factor is a result of memory size limitations (we assume that the sparse

matrix resides in memory) and can change in the future. Specifically, matrices with
dimensions larger than 232, require indices larger than 32 bits. We consider a square
sparse matrix with n = nrows = ncols = 232 and nnz = 100 · n = 100 · 232†. The
required CSR storage would be 100 · 232 · (4 + 8) bytes ≈ 4.7 TiB. Currently, only
some high-end enterprise servers contain this much memory. However, given the
current rate of advancement, it is probable that near-future commodity hardware
will support these capabilities.

2.3 Multithreaded SpMxV

There are several data partitioning schemes for parallelizing the SpMxV kernel on
a shared memory architecture. For CSR, coarse-grained row partitioning is usually
applied [Williams et al. 2007] where different blocks of rows are assigned to different
threads (see Figure 2). Threads operate on disjoint subsets of row ptr, col ind,
values, and y arrays. The only sharing occurs in x array data, but it does not
constitute a performance problem. Access to x is read only, allowing efficient data
caching over all processors. One could argue that the common use of x offers po-
tential for constructive cache sharing. In practice, however, this potential is not
realized, because shared data constitute a small part of the working set and cache
space is limited.
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Fig. 2: Row partitioning on SpMxVfor two threads.

The complementary approach to row partitioning is column partitioning where
each thread is assigned a block of columns. Although this approach is more nat-
urally applied to the CSC format, it can also be applied to CSR. An advantage

†The number 100 has been chosen because it is close to the average value of nnz/n for our
matrix suite (see Table II)
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of column partitioning is that each thread operates on a different part of the x

vector, which leads to better temporal locality for its elements in case of distinct
caches. A disadvantage, however, is the possibility of cache-line ping-pongs, since
each thread performs updates over all y elements. Having each thread use its own
y array eliminates this problem. The final result can be obtained by adding the
partial y arrays. Additionally, applying column partitioning to CSR may result in
performance degradation, due to loop overheads caused by empty or small rows.
Block partitioning is the combination of the two aforementioned schemes where

each thread is assigned an arbitrary two-dimensional block. It has the benefit of
allowing configurable data sizes for each thread. For this reason, it is applied when
the available memory space is limited (e.g., in the Cell processor [Gschwind et al.
2006]). Although we consider only row partitioning in our experimental evaluation,
we argue that the proposed formats will result in similar performance improvements
for other partitioning schemes as well.
Another issue of SpMxV parallelization is balancing each thread’s workload. We

apply a static balancing scheme based on the non-zero elements. Each thread is
assigned approximately the same number of elements and thus the same number of
floating-point operations.

3. INDEX COMPRESSION

3.1 Motivation and general approach

Sparse storage formats traditionally try to exploit contiguous elements, either in
one (Figure 3a) or two dimensions (Figure 3b). Examples include the BCSR format
[Saad 1994; Im and Yelick 2001], and the variable length one-dimensional block
format described in [Pinar and Heath 1999]. BCSR can be viewed as a generalization
of CSR where the granularity unit is an r × c dense block. The effect to overall
matrix size when converting from CSR to BCSR depends on the aptitude of the
selected block shape to capture the matrix structure. If resulting blocks contain
a small number of zeroes, significant index reduction is achieved. For example,
perfect blocking — i.e., none of the BCSR blocks contain zeroes — leads to an
index reduction by a factor of r ·c. On the contrary, zeroes included in BCSR blocks
must be explicitly added to value data, because all BCSR blocks are stored in a
dense form. This, depending on the matrix structure and selected block shape, may
lead to overall matrix size increase.

(a) (b)

Fig. 3: Sparse matrix patterns: (a) sequential elements, (b) two-dimensional blocks.

Our approach is based on the general premise that sparse matrices have dense
areas that do not necessarily contain contiguous non-zero elements (i.e., areas where
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elements are close but not sequential). These areas can contribute significantly to
index data size reduction when delta encoding is used to reveal the highly redundant
nature of the col ind array [Willcock and Lumsdaine 2006]. In a delta encoding
scheme the column indices are replaced with deltas, each of which is defined as the
difference of the current index with the previous one. Since delta values are positive
and less or equal than their corresponding column indices, they can be stored in
smaller size integers, leading to index data size reduction.
Instead of encoding each delta value to use only the necessary number of bytes,

we propose a coarse-grained approach where the matrix is divided into units with
a variable number of elements. For each of these units, the maximum delta value is
calculated, and a size that can represent this value is selected for all the delta values
of the unit. This technique enables for innermost loops with minimum overheads
by sacrificing some space. Normally, if each delta value was encoded separately, the
innermost loop of the SpMxV kernel would contain branches to implement decoding.
Misprediction of these branches in execution time leads to significant performance
degradation.
An important factor for the performance of this method lies in the choice of

the unit size. If the size is too small, the decompression overhead introduced will
dominate the performance gain from the compression. On the contrary, if the unit
size is large, there will be less opportunities for compression, because a single large
delta value will enforce big storage requirements for the whole unit.
This approach demonstrates a more abstract optimization strategy for the SpMxV

kernel, used to exploit matrix-specific structure information. To this direction the
concept of units could be extended to support more types of regularities, thus pro-
viding a number of advantages: (a) It can be used to exploit local regularities in
specific areas of the matrix, (b) It operates on a coarse-grained level and thus can
effectively minimize the introduced overhead by selecting sufficiently large sizes and
(c) it can bound the search space for regularities or patterns and assure that the
compression procedure will not exceed the available resources (e.g., time or storage).
In Section 3.4 we discuss a method for exploiting sequential elements.

3.2 The CSR-DU storage format

The CSR-DU (CSR with Delta Units) storage format divides index data into units
which are stored in a single byte-array called ctl. Each unit is limited to elements of
a single row and consists of two parts. First, the header where the unit’s properties
are stored. Second, the main body where the delta-encoded column indices are
stored. The header, in its simplest form, consists of two one-byte fields: (a) usize,
the number of elements the unit contains and (b) uflags, a bit-vector encoding the
unit’s characteristics. Since usize is stored in a single byte, the maximum possible
number of elements per unit is 28 = 256. The size (1, 2, 4 or 8 bytes)‡ of the delta
values stored in the main body can be extracted from the uflags field, along with a
marker that designates the beginning of a new row. Figure 4 presents an example of
the CSR-DU format. In this example a row with 8 elements is split into two units.

‡8 bytes delta values are unnecessary due to hardware limitations, but supported for complete-
ness.
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The first unit has 5 elements, 1-byte delta size, and a designator for a new row (nr).
The second unit has 3 elements, and 2-byte delta size.

200

213

234

268

323

200 13 21 34 55

431679D163

5

...

...

...

2002

2005

2009

...

D8
nr

us
iz

e

uf
la

gs

header body (delta values)

col_ind

row_ptr

Fig. 4: Example of the CSR-DU storage format where a row is split into two units.

The compression procedure of CSR-DU is straightforward. It can be performed
in O(nnz) steps by scanning the matrix elements once, while keeping appropriate
information in buffers until a unit is finalized. This means that the construction
process of CSR-DU involves no overhead in terms of time complexity compared to
CSR. An important decision during this procedure is when to finalize a unit. We
implemented a simple approach where a unit is finalized if (a) a new row starts in
the next element, or (b) the maximum unit size is reached. A more elaborate scheme
would be to finalize a unit if a new element increases the delta storage size, as long
as the unit already contains more than a predetermined number of elements.
The SpMxV implementation for the CSR-DU storage format is presented in Fig-

ure 5. Access to the ctl array is performed via macros (e.g., ctl get u16()) that
return the appropriate value and advance the array pointer as necessary. Initially,
the uflags and usize header fields are extracted from the ctl byte-array. If the
unit belongs to a new row, appropriate initializations are performed: the y index is
increased and the x index is zeroed. Finally, the appropriate multiplication code is
executed based on the unit type. The innermost loops of the multiplication code
for the various cases do not contain any branches, which allows for fast execution
by the processor.
Parallelization is similar to CSR. For example, we consider the row partitioning

scheme described in Section 2.3. Each thread needs an offset in the ctl, values and
y arrays to mark the beginning of its data, and the total number of rows that have
been assigned to it. The next paragraphs discuss extensions to CSR-DU format for
performance improvement.

3.3 Unit offsets

A problem with CSR-DU, as described in the previous paragraphs, is that the unit’s
first delta value can be significantly larger than the rest, imposing an unnecessarily
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do {

usize = ctl_get_u8 (ctl);

uflags = ctl_get_u8 (ctl);

if ( flags_new_row (uflags) ){

y_indx ++;

x_indx = 0;

}

switch ( flags_type (uflags) ){

case CSR_DU_U8 :

for (i=0; i<usize; i++) {

x_indx += ctl_get_u8 (ctl );

y[y_indx] += *( values ++) * x[x_indx ];

}

break;

case CSR_DU_U16 :

for (i=0; i<usize; i++) {

x_indx += ctl_get_u16 (ctl );

y[y_indx] += *( values ++) * x[x_indx ];

}

break;

case CSR_DU_U32 :

...

}

} while (values < values_end );

Fig. 5: SpMxV CSR-DU implementation.

large storage size for the rest of the deltas. In the example of Figure 4 the density
of the second unit’s elements allows for one-byte delta values. However, the large
distance from the first unit dictates two-byte storage. To counter this problem,
we modify the original CSR-DU format to include a column index offset from the
previous unit in the header. The offset is called ujmp and is stored as a (positive)
variable-length integer at the end of the header. This technique improves compres-
sion of the column indices at no cost for performance since the change does not effect
innermost loops. For the implementation of the variable-length integers, we used a
simple scheme where the integer’s bits in its normal form are divided in 7-bits parts.
These parts are stored in consecutive bytes in which the MSB is used to mark the
last byte of the integer.

3.4 Sequential elements

Although delta encoding can significantly reduce index data volume, it does not
handle the occurrence of sequential elements efficiently. If all unit elements are
sequential column indexing information can be completely omitted. This, not only
reduces the working set size, but also eliminates indirect accesses on x allowing for
better optimization from both the compiler and the CPU. We extend CSR-DU, in
a way similar to the format presented in [Pinar and Heath 1999], to support units
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containing sequential elements. An example of this unit type (sequential units) is
illustrated in Figure 6. Besides the usize and uflags fields, the unit data also
contain the column index offset from the previous unit as a variable length integer.
Note that if unit offsets are used, then the last field of the unit coincides with ujmp.

585

584

583

582

581

580

6 SEQ 13

...

...

567

us
iz

e

uf
la

gs

offset

Fig. 6: Example of sequential elements unit.

An important parameter that needs to be considered during the compression
phase is the minimum possible size for the sequential units. We will refer to this
parameter as seq. Consecutive elements of size less than seq will be encoded using
delta encoding as described in previous sections. Tuning of this parameter prevents
performance degradation from sequential units with small size. For example, if
seq=1 then all units of the matrix will be encoded as sequential. This will result
in poor performance if the matrix does not contain enough sequential elements. In
general, the effect of seq on SpMxV performance depends on: (a) the architecture
of the execution platform and (b) the structure of the matrix (e.g., frequency of
sequential units).

3.5 Alignment of ctl array values

Another issue with the CSR-DU format is that packing of delta values larger than
1 byte in the ctl array may lead to unaligned storage. For example in the case of
Figure 4 if the first field of the ctl array is aligned then the three 16-bit deltas in the
second unit are stored in an unaligned manner. Some ISAs disallow unaligned access.
Others (e.g., the x86 and x86 64 ISAs) include instructions that allow unaligned
access, but may result in performance degradation. In our implementation, we pad
the ucis sections in the ctl array, so that the accesses of delta indices are always
performed in an aligned manner.
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4. VALUE COMPRESSION

4.1 Motivation and general approach

As mentioned in Section 2.2, values typically constitute the larger part of the working
set of a CSR matrix because they require 64-bit storage. Hence, value compression
is potentially more beneficial than index compression in terms of working set reduc-
tion. Conversely with index data, value data do not inherently contain redundancy
in the general case. Moreover, the compression of floating point values is not as
straightforward as integers, because floating point arithmetic operations produce
rounded results.
Nevertheless, we have noticed that a significant number of matrices from our

experimental set contain a small number of unique values, relative to the total non-
zero values (nnz ). From an information theory perspective this results in low entropy
for the value data, making them a good target for compression. Since we aim for a
computationally light decompression scheme we follow a simple approach: instead
of storing all the nnz values, we store only the common values and pointers to them.
If the total-to-unique values ratio is high enough, the working set data volume will
be reduced. Adequate size reduction can lead to SpMxV execution time decrease,
despite the overhead induced by indirectly accessing each value.

4.2 The CSR-VI storage format

The CSR-VI (CSR with Values Indirect) format replaces the CSR values array
with two arrays: vals unique and val ind. The first contains only the unique
matrix values. The second contains indices in the vals unique array for each of the
nnz matrix elements. To achieve working set size reduction, val ind size must be
significantly smaller than values size. A simple approach towards this goal is to
reduce the storage requirements of individual value indices compared to the storage
requirements of original values. Hence, in CSR-VI the value index size is determined
by the number of the unique values that need to be addressed. For example, if there
exist uv unique values and 28 < uv ≤ 216, then a 2-byte integer will be used for each
value index. Although this approach does not optimally compresses value indices, it
induces only a small overhead because it does not add any branches. An example of
this value structure is presented in Figure 7, which contains the matrix values from
Figure 1.

val ind ( 0 1 2 3 4 1 5 6 5 7 1 8 1 5 6 1 )

vals unique ( 5.4 1.1 6.3 7.7 8.8 2.9 3.7 9.0 4.5 )

Fig. 7: Example of the value indexing structure for the CSR-VI format for the matrix presented
in Figure 1.

The SpMxV kernel implementation for CSR-VI is presented in Figure 8. It can
be easily derived from the CSR case by replacing the access of values with an
indirect access of vals unique based on the value of val ind. Even though the
resulting code contains an additional memory reference for each of the nnz elements,
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it will lead to fewer data being transferred from memory when the number of unique
values is relatively small. Nevertheless, working set reduction alone is not sufficient
to achieve performance improvement; the additional overhead of indirect accesses
must be amortized. The compression for CSR-VI is implemented using a hash table
and, as in CSR-DU, its complexity is O(nnz).

for(i=0; i<N; i++)

for(j=row_ptr[i]; j<row_ptr[i+1]; j++){

y[i] += vals_unique [val_ind[j]] * x[col_ind [j]];

}

Fig. 8: SpMxV kernel for the CSR-VI storage format.

4.3 Combining CSR-VI and CSR-DU

CSR-DU and CSR-VI can be applied independently, because they operate on dif-
ferent data sets: CSR-DU is concerned with index data, while CSR-VI with matrix
numerical values. We will refer to their combination as CSR-DUVI, a storage format
that applies compression to both index and value data. Obviously, CSR-DUVI is
not a general format, but can only be applied to matrices with a small number of
unique values. A part of the CSR-DUVI SpMxV kernel implementation is shown in
Figure 9.

usize = ctl_get_u8 (ctl );

uflags = ctl_get_u8 (ctl);

if ( flags_new_row (uflags) ){

y_indx ++;

x_indx = 0;

}

switch ( flags_type (uflags) ){

case CSR_DU_U8 :

for (i=0; i<usize; i++) {

x_indx += ctl_get_u8 (ctl );

y[y_indx] += vals_unique [*( val_ind ++)] * x[x_indx ];

}

break;

case CSR_DU_U16 :

...

}

Fig. 9: Code snippet for the SpMxV kernel for CSR-DUVI.
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5. EXPERIMENTAL EVALUATION

5.1 Experimental setup

We conduct experiments on two systems. The first system is equipped with two
quad-core Intel Harpertown processors (Figure 10). Cores operate at 2 GHz, include
two private L1 32 KiB caches (instructions and data), and are grouped in pairs that
share a unified 6 MiB L2 cache. The processors interface with main memory via the
Intel 5000p Memory Controller Hub (MCH) which provides four channels of fully
buffered DDR2 DIMM (FB-DDR2) memory.

L2

L1L1C2 C3

FB−DDR2
FB−DDR2
FB−DDR2
FB−DDR2

L2

C0 L1L1 C1

L2

L1L1C4 C5

L2

L1L1 C7C6

MCH

Fig. 10: An 8-core system comprising of two Harpertown processors.

In contrast with Harpertown that uses a unique interface with main memory, the
second system consists of two Intel Nehalem§ processors that implement NUMA.
Each processor has four cores that operate on 2.8 GHz. Each core has private L1
(32 KiB instructions and data) and L2 (256 KiB unified) caches. Cores of the same
processor share an L3 (8 MiB unified) cache. Moreover, Nehalem is equipped with
an on-chip memory controller that supports three DDR3 memory channels. Com-
munication with other memory nodes and I/O devices is implemented via QuickPath
(QP) interconnect point-to-point links (Figure 11). Additionally, Nehalem cores im-
plement Simultaneous MultiThreading (SMT), providing two different thread con-
texts per core.
As depicted in Figures 11 and 10, real-world systems usually employ a hierarchical

topology where different core sets share different parts of the memory hierarchy. To
distinguish between different scheduling configurations we will use a notation that
explicitly describes the number of threads used in each level of the hierarchy. The
levels are represented as:

t : SMT threads on the same core (Nehalem).

c0 : cores that share L2 (Harpertown)

c1 : cores that do not share L2 (Harpertown)

§An initial performance evaluation of a Nehalem system can be found in [Barker et al. 2008].
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QP

L2 L2 L2

L1

L2 L2 L2 L2 L2

C0 C1 C2 C3 C4 C5 C6 C7

DDR3 DDR3

L3

L1 L1 L1 L1 L1 L1 L1

QP

MEM MEM

L3

Fig. 11: An 8-core system comprising of two Nehalem processors.

c : cores that do not share L3 (Nehalem)

d : different dies (Harpertown and Nehalem)

Table I provides a concise overview of the two processors used for our experimental
evaluation.

System Harpertown Nehalem

Model E5405 X5560
Frequency (Ghz) 2.0 2.8
L1 (data/instruction) 32k/32k 32k/32k
L2 (unified) 6M (1/2 cores) 256k (1/core)
L3 (unified) - 8M (1/chip)
Multithreading configuration 2c0 x 2c1 x 2d 2t x 4c x 2d

Table I: Overview of the systems used in the experimental evaluation.

For our evaluation we compiled our code with gcc 4.3.2, and performed our ex-
periments in a 64-bit version of the Linux operating system (2.6.30). We explicitly
parallelized all versions of the SpMxV kernel using the pthreads interface of the
GNU libc library (NPTL 2.7). Moreover, we bound threads to specific cores us-
ing the sched setaffinity() system call, and we allocated memory from specific
NUMA nodes using the libnuma library (version 2.0.2).
We set the default storage size for indices and values to 32 and 64 bits respec-

tively. Furthermore, we optimized the SpMxV code to write the y[i] value at the
end of each innermost loop, by keeping the intermediate result in a register. The
experiments were conducted by measuring the execution time of 128 consecutive
SpMxV operations. We made no attempt to artificially pollute the cache after each
iteration, to better simulate iterative scientific application behavior where matrix
data are present in the cache hierarchy, because either they have just been produced,
or they were recently accessed. Additionally, we set x to be the y vector of the pre-
vious iteration, so that our benchmark has similar behaviour with scientific methods
based on SpMxV (e.g., GMRES). Setting y as x, however, restricts our matrix suite
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to contain only square matrices. Finally, we applied the row partitioning scheme to
all multithreaded implementations.

5.2 Memory throughput benchmark

To quantify system limits and the role of the various micro-architectural character-
istics, we developed a benchmark to measure maximum throughput when different
threads read data from the main memory. These measurements can be used to
reveal system performance trends for applications with intensive streaming reads,
such as the SpMxV kernel. The benchmark allocates and initializes large memory
areas and subsequently performs read operations using streaming instructions (x86
Streaming SIMD Extensions – SSE).
Results for the Harpertown system are shown in Figure 12 that illustrates the

achieved memory throughput for different scheduling configurations. As expected,
scalability is poor. For example, when all available cores are used the memory
throughput is increased by a factor of 1.62 relevant to the single thread scenario.
This scalability problem is more intense for threads that operate on the same die:
two threads in the same core achieve only a 1.12 throughput increase when compared
to the serial case, while the same number for threads in different dies achieve about
1.54. Another observation from the diagram is that memory accesses from different
threads may lead to performance degradation due to contention. For example, the
throughput of 8 threads is less than the throughput of the 2c0×2d configuration.
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Fig. 12: Harpertown read memory throughput for different thread configurations.

The results for the Nehalem system are presented in Figure 13. Figure 13a shows
the achieved memory throughput of one thread for different NUMA memory alloca-
tion policies. Local node allocation outperforms remote and interleaved policy by a
significant factor (1.51 and 1.25 respectively). Figure 13b presents results for various
thread configurations when using memory allocated on the local NUMA node for
each thread. A single thread achieves 11.1 GiB/sec when reading from a local node,
which constitutes a 3.1 improvement over Harpertown single-thread performance.
Moreover, NUMA allows for good scalability when different processors are used.
The speedup achieved for two threads running on different dies is — as expected —
almost linear (1.96), and when all cores are utilized the speedup is 3.27. It also is
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worth noting that when all cores are utilized the Nehalem processor outperforms the
Harpertown processor by a factor of 6.25 (36.4 vs 5.9 GiB/sec) in this benchmark.
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Fig. 13: Read memory throughput for the Nehalem architecture: (a): Nehalem read memory
throughput for one thread and different NUMA allocation policies. (b): Nehalem read memory
throughput for different thread configurations. Local node allocation policy is used.

A comparison between these two systems shows a technology shift towards designs
that focus on memory throughput performance, and indicates the importance of the
memory subsystem for future multicore systems. Regarding SpMxV, we expect
that the kernel will scale better in Nehalem, especially if it is assured that data are
distributed among NUMA nodes so that each thread accesses local memory.

5.3 Matrix suite

Iterative use of SpMxV induces temporal locality to the application. Hence, the
streaming behavior of the kernel is maintained only if the working set, and more
specifically the matrix data, is significantly larger than the system’s aggregate cache.
For this reason, we build our matrix suite using matrices with a CSR working set
larger than 4·6 = 24MiB, which is the greater aggregate cache for the systems used in
our experimental evaluation. The resulting matrix set consists of 50 matrices which
are listed in Table II. The table also includes their characteristics, and the achieved
size reduction from the proposed methods. Size reduction for the CSR-DUVI method
is not included, but can be derived from the sum of the corresponding size reductions
for CSR-DU and CSR-VI.
The majority of the matrices represent real-world problems and were selected from

the University of Florida Sparse Matrix Collection [Davis 1997]. Our suite includes
the fdif202x202x102matrix, which is a matrix obtained by a 5-pt finite difference
problem for a 202× 202× 102 regular grid created by SPARSKIT [Saad 1994], and
two artificial matrices that represent the two ends of the sparsity spectrum: (a) a
dense 2000× 2000 matrix (large-dense) and (b) a random 100000× 100000 sparse
matrix (random100000).
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matrix characteristics size reduction (%)

name
dim nnz size

ttu
BCSR DU VI

/103 /106 /1MiB (max) noseq seq=8 seq=4

boneS10 914.9 55.5 638.3 1,386,710.6 22.5 16.6 27.1 30.0 58.0

ldoor 952.2 46.5 536.0 2.1 9.5 6.9 19.9 30.1 -

inline 1 503.7 36.8 423.3 2.0 22.4 4.7 15.8 22.8 -
fdif202x202x102 4,000.0 27.8 333.9 6,960,000.0 -38.5 15.9 15.9 15.9 55.7

F1 343.8 26.8 308.4 2.1 22.3 5.8 16.2 21.0 -

rajat31 4,690.0 20.3 250.4 5,098.2 -39.3 21.5 21.5 21.5 46.4

msdoor 415.9 20.2 233.2 2.1 10.2 11.9 22.3 29.1 -
Freescale1 3,428.8 18.9 229.6 2.0 -31.7 0.5 0.5 0.6 -

Ga41As41H72 268.1 18.5 212.6 5.1 -16.9 16.6 21.7 25.1 20.3

af shell9 504.9 17.6 203.2 18.2 12.0 16.6 28.8 30.9 29.4

af 5 k101 503.6 17.6 202.8 1.9 12.1 16.5 28.8 30.9 -
TSOPF RS b2383 38.1 16.2 185.2 21.2 26.3 21.0 33.1 33.1 30.2

kkt power 2,063.5 14.6 175.1 173.5 -61.2 5.2 5.2 5.2 31.5

Si41Ge41H72 185.6 15.0 172.5 3.2 -13.5 16.6 21.8 25.7 -

random100000 100.0 15.0 171.8 1,497.8 -66.3 16.7 16.7 16.7 -
nd12k 36.0 14.2 162.9 2.9 16.4 16.7 29.3 30.0 -

crankseg 2 63.8 14.1 162.2 3.2 5.8 16.8 25.8 28.7 -

pwtk 217.9 11.6 134.0 2.1 14.1 15.7 31.3 31.6 -

bmw3 2 227.4 11.3 130.1 2.7 7.4 17.5 25.9 30.0 -
ohne2 181.3 11.1 127.3 2.1 -24.8 16.7 17.8 20.0 -

hood 220.5 10.8 124.1 2.1 10.4 11.3 22.5 29.3 -

Si87H76 240.4 10.7 122.9 31.9 -29.6 16.6 20.4 22.7 31.0

bmwcra 1 148.8 10.6 122.4 3.4 22.4 16.7 25.7 28.4 -
atmosmodj 1,270.4 8.8 105.7 2,203,720.0 -38.4 16.0 16.0 16.0 55.7

thermal2 1,228.0 8.6 102.9 1.8 -42.5 12.5 12.5 13.3 -

G3 circuit 1,585.5 7.7 93.7 31,787.7 -27.1 9.3 9.3 9.3 54.6
cage13 445.3 7.5 87.3 17,936.1 -56.2 11.1 11.1 11.1 49.0

rajat30 644.0 6.2 73.1 9.0 -31.6 9.9 10.7 14.0 25.1

pre2 659.0 6.0 70.7 7.6 -38.5 14.1 14.6 14.8 23.7

Hamrle3 1,447.4 5.5 68.6 104,042.3 -6.2 17.8 17.8 19.6 53.6
largebasis 440.0 5.6 65.3 17,539.7 15.7 0.7 19.2 21.8 48.7

Chebyshev4 68.1 5.4 61.8 3.5 -28.3 20.8 26.0 26.0 -

apache2 715.2 4.8 57.9 120,446.8 -37.7 15.9 15.9 15.9 55.6

s3dkq4m2 90.4 4.8 55.5 64.9 16.7 16.6 31.8 31.8 32.1
ship 001 34.9 4.6 53.3 3.8 6.2 16.8 28.7 31.2 -

torso3 259.2 4.4 51.7 1.4 -25.4 15.3 15.3 15.3 -

thread 29.7 4.5 51.3 2.1 22.3 17.1 26.5 28.2 -

ASIC 680k 682.9 3.9 46.9 48.3 -32.6 7.5 9.1 10.9 30.2
large-dense 2.0 4.0 45.8 122.1 29.2 24.9 33.2 33.2 -

barrier2-9 115.6 3.9 45.0 3.6 -37.6 16.8 16.8 17.3 -

xenon2 157.5 3.9 44.9 41.4 19.4 21.0 21.0 21.8 31.3

parabolic fem 525.8 3.7 44.1 14.2 -46.9 1.0 1.0 1.0 27.3
FEM 3D thermal2 147.9 3.5 40.5 1.9 -13.7 19.3 19.3 19.3 -

sme3Dc 42.9 3.1 36.2 1.3 -58.0 16.8 16.8 16.8 -

stomach 213.4 3.0 35.4 1.3 -29.7 21.5 21.5 21.5 -

thermomech dK 204.3 2.8 33.4 1.4 25.6 12.8 12.8 13.1 -
helm2d03 392.3 2.7 32.9 25.0 -52.1 1.4 1.4 3.8 29.3

ASIC 680ks 682.7 2.3 29.3 57.2 -31.7 17.8 20.3 22.3 44.5

poisson3Db 85.6 2.4 27.5 1.0 -60.0 17.1 17.1 17.1 -
rma10 46.8 2.4 27.3 1.9 5.3 19.1 26.1 29.4 -

Table II: Matrix suite used for the experimental evaluation. The first columns contain information
about each matrix: dim contains the number of rows and columns of the matrix in thousands
(nrows = ncols, since we consider only square matrices), nnz contains the number of non-zero
elements in millions, size contains the matrix size in MiB when stored in CSR format and ttu
contains the total-to-unique ratio for the values of each matrix. The last five columns show the size
reduction achieved by various methods compared to CSR. For BCSR we selected the block shape
that achieved maximum size reduction.

ACM Journal Name, Vol. V, No. N, Month 20YY.



18 · K. Kourtis et al.

5.4 CSR performance evaluation

Figure 14a illustrates the average speedup of multithreaded CSR over all matri-
ces, for different thread scheduling configurations on the Harpertown system. The
speedup for 8 threads is 1.9, demonstrating the poor scalability of SpMxV. The
speedup increase observed between the 2c0 and 2c1 cases — 1.17 and 1.23 re-
spectively — can be accredited to matrix data caching during consecutive SpMxV
executions. Cases 2c1 and 2c0×2c1 achieve roughly the same performance, even
though available processors are doubled. We attribute this fact to the limited mem-
ory bandwidth since, as is shown in Figure 12, the available memory throughput for
2 and 4 cores in a single die is essentially the same.
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Fig. 14: Average speedups for the multithreaded CSR SpMxV kernel across different thread con-
figurations. The “local node allocation” line in the Nehalem figure corresponds to a NUMA-aware
version of the kernel, that binds matrix data in local NUMA node memory. The speedup for
Nehalem is obtained using the single-threaded performance with default allocation, as the base
performance.

A NUMA-oblivious multithreaded program can run unmodified in a NUMA sys-
tem. However, there is no guarantee that data placement will be efficient. Thus, to
maximize performance, we developed NUMA-aware versions of our methods, where
memory allocation ensures that data accessed from a single thread are placed into
the local NUMA node of the corresponding processor. Data shared between threads,
e.g., the unique values array in the CSR-VI and CSR-DUVI methods, are allocated
using standard mechanisms (i.e., malloc()).
Figure 14b presents results for the Nehalem system for two versions of the CSR

SpMxV kernel: default allocation (NUMA-oblivious) and local allocation (NUMA-
aware). The large memory throughput capabilities of Nehalem result in noticeably
better performance than Harpertown, even for the NUMA-oblivious version. The
NUMA-aware version further improves performance, achieving a 4.44 speedup for the
4c×2d case. SMT threads utilization in this case, however, degrades performance
(4.31).
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Even though the Nehalem memory subsystem architecture drastically increases
CSR SpMxV performance, it is still far from the theoretical maximum, leaving room
for performance improvement by applying compression schemes. In the following
sections we present only NUMA-aware versions for all methods on the Nehalem
system to focus on cases that maximize performance.

5.5 CSR-DU performance evaluation

To evaluate CSR-DU, we performed experimental runs using several different com-
binations for the method’s parameters. Versions with aligned deltas and unit offsets
performed consistently better or similar than the rest, and so we present only them
in the following results. Regarding sequential units, we consider three cases: absence
of sequential units (noseq) and sequential units with a minimum of 8 (seq=8) and 4
(seq=4) elements. It should be noted that seq=4 performs more aggressive compres-
sion than seq=8. We compare CSR-DU performance against both CSR and BCSR.
For the BCSR method we performed experiments with a number of different block
shapes configurations*, using specialized SpMxV versions. In the following results,
unless otherwise stated, we use the best performing BCSR case over all available
block shape configurations.
The compression ratios achieved for each matrix are listed in Table II. The size re-

duction achieved for the large-densematrix is the maximum possible for CSR-DU:
24.9% for noseq, and 33.2% for sequential units. The compression ratios of other
matrices in our suite show a large variation, ranging from zero to close to maximum.
On average, CSR-DU reduces matrix data by 14.2% for noseq, 19.3% for seq=8 and
21.1% for seq=4. BCSR is not able to efficiently capture the structure of matrices
in our suite: it results in size increase for 28 matrices. Moreover, only for 2 matrices
(F1, thermomech dK) the best BCSR reduction is greater than reduction achieved
by CSR-DU seq=4.
Figure 15 illustrates Harpertown CSR-DU performance results. Figure 15a shows

the average speedup of CSR, BCSR, and CSR-DU over single-threaded CSR, for
different thread affinity configurations. BCSR performs worse than CSR on average
for all cases. The reason for that is the large number of matrices for which BCSR
results in size increase. When all cores are utilized, CSR-DU methods perform better
on average than CSR and BCSR. The seq=4 case achieves the best average speedup
for 8 threads (2.45), improving performance by 28.7% and 35.0% over CSR and
BCSR average, respectively. An interesting aspect of CSR-DU variants performance
is that the best version for 8 threads (seq=4) has the lowest performance in the serial
case (7% slowdown compared to CSR).
Figure 15c shows the performance improvement of BCSR and CSR-DU over CSR

for each individual matrix, when 8 threads are utilized. An important observation
is that the CSR-DU method does not exhibit significantly reduced performance over
CSR for any matrix in our suite. For BCSR, a significant number of matrices take
a performance hit compared to CSR, due to a significant size increase.
Selecting the optimal storage format is not a straightforward task, since perfor-

*the block shapes considered were: 1× 2, 1× 3, 1× 4, 2× 1, 2× 2, 2× 3, 2× 4, 3× 1, 3× 2,
4× 1, 4× 2
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Fig. 15: CSR-DU performance results for the Harpertown system: (a) Average speedup of CSR,
BSCR and CSR-DU methods over serial CSR for different thread configurations. (b) Distribution
of best performing methods for different thread configurations. (c) performance improvement of
BCSR and CSR-DU methods over CSR for individual matrices when all 8 cores are utilized. For
(a) and (c), the BCSR performance is the best performing case for each matrix over all considered
block shapes.

mance depends on the system architecture and the matrix structure in ways that
are not always visible or simple. Figure 15b depicts a breakdown of the best per-
forming methods distribution for our matrix suite. Concentrating on the full core
utilization case for Harpertown, CSR-DU is a good universal choice for our matrix
suite, since it achieves best performance for 43 matrices. For the same case, BCSR
achieves the best performance for 4 matrices and CSR for 3. When only one thread
is utilized, the best performing methods distribution is more balanced (17 for CSR,
15 for BCSR and 18 for CSR-DU). In general, we argue that as long as the main
bottleneck is memory bandwidth, CSR-DU is a more promising option than BCSR
and CSR. When the memory bandwidth bottleneck becomes less severe, the compu-
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tation overhead imposed by decompression is not amortized, making CSR-DU less
attractive.
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Fig. 16: CSR-DU performance results for the Nehalem system: (a) Average speedup of CSR, BCSR
and CSR-DU methods over serial CSR for different thread configurations. (b) Distribution of best
performing methods for different thread configurations. (c) performance improvement of BCSR
and CSR-DU methods over CSR for individual matrices, when all 8 cores are utilized (4c×4d).
All methods considered are NUMA-aware. For (a) and (c), the BCSR performance is the best
performing case for each matrix over all considered block shapes.

Nehalem results are presented in Figure 16. Figure 16a demonstrates the average
speedup of considered methods over serial CSR. When all cores are utilized (4c×2d),
the best average performance for CSR-DU is 4.6 — a 12.2% and 11.7% improvement
over CSR and BCSR averages respectively — and is achieved by seq=8. Hence,
even for the Nehalem system, where the memory bottleneck is less severe, there is
a margin for performance improvement by applying CSR-DU. Interestingly, when
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all SMT threads are utilized (2t×4c×2d), CSR-DU average for seq=4 and seq=8 is
improved; all other methods result in a slowdown.
Figure 16c presents BCSR and CSR-DU improvement for each matrix in our suite

over CSR, when all cores are utilized (4c×2d). CSR-DU performs worse than CSR
for five matrices (helm2d03, sme3Dc, parabolic fem, G3 circuit, Freescale1), al-
though in some cases the difference is marginal. Thus, we argue that, CSR-DU is
fairly stable, even when the memory bottleneck is alleviated by the system’s archi-
tectural characteristics. The number of matrices that exhibit reduced performance
for BCSR is 24, which again can be attributed to padding.
Figure 15b illustrates the distribution of best performing methods. For a sin-

gle thread, CSR achieves the best performance for 19 matrices, BCSR for 22 and
CSR-DU for 9. However, as the number of cores utilized increases, CSR-DU becomes
the most attractive option: for 4c×2d CSR-DU performs best for 36 matrices, BCSR
for 9 and CSR for 5.

5.6 CSR-VI performance evaluation

Contrary to CSR-DU, CSR-VI can be applied meaningfully only to matrices with
a large number of common values. To elaborate on the applicability of the method
for a given matrix, we define the total-to-unique (ttu) values ratio, as the fraction
of the number of non-zero elements (nnz ) to the number of unique values (uvals),
i.e., ttu = nnz

uvals . A high value of ttu indicates that the matrix is fitting for the
CSR-VI method, while a small one shows that it will most likely result in slowdown.
We use the empirical criterion ttu ≥ 5 to select the appropriate matrices from our
matrix suite, and discard artificial matrices random100000 and large-dense which
have randomly created values. The resulting matrix suite has 22 matrices, which is
a significant portion of the original set (see Table II). For these matrices, CSR-VI
achieves an average matrix size reduction of 39.2%, the maximum and the minimum
being 58.8% (boneS10) and 20.3% (Ga41As41H72), respectively.
Performance results for Harpertown are shown in Figure 17. As expected, per-

formance gains from value compression are larger than those from index compres-
sion, since we are considering 32-bit indices and 64-bit values for our reference CSR
implementation. Even in the serial case, CSR-VI achieves a 12.4% performance
improvement over CSR (Figure 17a). As the number of utilized cores increases,
memory bandwidth bottleneck becomes more intense and working set reduction be-
comes more beneficial. For 8 threads the average CSR-VI speedup is 2.75, which is
a 51.7% improvement over the corresponding CSR case. Figure 17b shows the per-
formance improvement of CSR-VI over CSR for each individual matrix, when using
8 threads. CSR-VI leads to reduced performance for only Ga41As41H72, which is
the matrix with the lower ttu value (5.1) in our suite.
CSR-VI performance for Nehalem is shown in Figure 18. The ample memory

throughput capabilities of Nehalem limit the potential CSR-VI benefits. CSR is
able to utilize a large portion of these capabilities due to hardware prefetching.
This technique, employed by modern processors, detects easily-predicted memory
access patterns (e.g., sequential) and prefetches successive data into the cache hi-
erarchy. Contrarily, CSR-VI performs random accesses on the vals unique array;
these accesses cannot be predicted, leading to increased memory latencies.
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Fig. 17: Performance of the CSR-VI method on the Harpertown system: (a) average speedup of

CSR and CSR-VI methods for different thread configurations. (b) performance improvement of
the CSR-VI method over CSR for individual matrices, when all 8 cores are utilized.
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Fig. 18: Performance of the CSR-VI method on the Nehalem system: (a) average speedup of
CSR and CSR-VI methods for different thread configurations. (b) performance improvement of
the CSR-VI method over CSR for individual matrices, when all 8 cores are utilized. All methods
considered are NUMA-aware.

As can be seen in Figure 18a, CSR-VI performs worse than CSR in the serial case
(slowdown of 15%). In the 4c×2d case, however, CSR-VI reaches a speedup of 4.13,
which is a 8.6% improvement over the corresponding CSR average speedup. When
all available SMT threads at each core are utilized (2t×4c×2d) CSR-VI average
is increased to 4.23. For 4c×2d, CSR-VI performs worse than CSR for 6 matrices
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(Figure 18b).

5.7 CSR-DUVI performance evaluation

Combining CSR-VI and CSR-DU leads to an average size reduction of 52.4% for
noseq, 56.2% for seq=8 and 57.3% for seq = 4. Experimental results for Harpertown
are illustrated in Figure 19. As can bee seen in Figure 19a, CSR-DUVI serial perfor-
mance is similar to CSR. In the 2c0×2c1×2d case, however, CSR-DUVI results in
a significant parallel speedup increase. More specifically, seq=8 achieves a speedup
of 4.04, which improves upon CSR and CSR-VI by 123% and 47%, respectively.
Evidently, part of this large improvement is due to matrices which now fit, in whole
or in a significant portion, into L2 cache. Moreover, as can be seen in Figure 19b
CSR-DUVI improves performance over CSR for all matrices.
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Fig. 19: Performance of the CSR-DUVI method on the Harpertown system: (a) speedup of CSR
and CSR-DUVI methods over serial CSR for different thread configurations. (b) performance
improvement of CSR-DUVI methods over CSR for individual matrices, when all 8 cores are utilized.

Nehalem results are presented in Figure 20. The best CSR-DUVI average speedup
for 4c×2d (4.41) and 2t×4c×2d (4.57) is achieved by seq=8 (Figure 20a). The
respective improvements over CSR-VI are 6.6% and 8.2%, and over CSR’s best
performing case (4c×2d) 15.7% and 20%. Finally, there are 5 matrices with reduced
CSR-DUVI performance over CSR (Figure 19b).

5.8 Performance evaluation summary

Figure 21 summarizes previous results. It illustrates the average speedup over single-
threaded CSR for all methods examined in both systems, when all 8 cores are
utilized. A general conclusion is that there exists a compression level, different
for each architecture, beyond which the tradeoff between storage and computation
becomes less attractive and can even lead to performance degradation. For the
Harpertown processor, which has limited available bandwidth, this point is difficult
to reach and it only becomes visible in our experiments in the CSR-DUVI method
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Fig. 20: Performance of the CSR-DUVI method on the Nehalem system: (a) speedup of CSR and
CSR-DUVI methods over serial CSR for different thread configurations (b) performance improve-
ment of CSR-DUVI methods over CSR for individual matrices, when all 8 cores are utilized. All
methods are NUMA-aware.

where the performance of seq=8 is better than the seq=4 case. On the other hand,
the architectural characteristics of the Nehalem system (NUMA, larger memory
throughput capabilities) make this point easier to reach (e.g., small improvement of
CSR-DUVI over CSR-VI).
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Fig. 21: Average speedups over the serial CSR for various methods, when all cores are utilized
(2c0× 2c1× 2d for Harpertown and 4c× 2d for Nehalem): (a): CSR, BCSR and CSR-DU over all
matrices, (b): CSR, BCSR, CSR-VI, CSR-DUVI over the 22 matrices with ttu ≥ 5. The Nehalem
versions are NUMA-aware, to take full advantage of the underlying hardware.

A question that rises, regarding the applicability of compression methods for
improving SpMxV performance, is whether they will remain profitable on the face of
new systems that focus on memory throughput performance. An argument in favor
of such methods is that as memory throughput increases, so does the number of the
cores on the system (e.g., the Nehalem architecture targets 8-core processors, which
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have not yet been introduced in the market). Moreover, memory performance tends
to improve with smaller rates than CPU performance (memory wall problem).

6. RELATED WORK

6.1 Serial SpMxV

Due to the importance of SpMxV there is an abundance of scientific work targeting
the optimization of the serial version of the kernel. A number of alternatives to CSR
have been proposed, such as JD (Jagged Diagonal), CDS (Compressed Diagonal
Storage) and Ellpack-Itpack [Barrett et al. 1994; Saad 2003]. These formats try
to exploit regularities in the structure of the sparse matrix, to reduce the storage
requirements and the execution time of SpMxV. Moreover, there is a large number of
works that propose optimization techniques for the efficient execution of the kernel.
Several of these efforts [Toledo 1997; Pinar and Heath 1999; Im and Yelick 2001;
Vuduc et al. 2002; Vuduc and Moon 2005] aim at the optimization of the irregular
and indirect accesses on the x vector, using methods such as matrix reordering,
register blocking and cache blocking. Other works [White and Sadayappan 1997;
Mellor-Crummey and Garvin 2004] are concerned with the performance problems
that arise in matrices with a large number of rows with small length.

6.2 Index Compression

A significant part of the SpMxV optimization techniques reported in the related
literature result in index data reduction. Typical examples are blocking methods
such as BCSR [Saad 1994; Im and Yelick 2001] that store only per-block index
information. Traditionally the main focus of BCSR has been serial performance
improvement (e.g., via register blocking) and not working set reduction. For this
reason, BCSR has several disadvantages if used as a compression technique. First
and foremost, depending on the matrix structure, it may increase the total size of
the matrix due to padding (Table II). Secondly, it relies on constant-shape blocks
and thus has limited capabilities of adapting to more complex matrix structures.
Pinar and Heath [1999] describe a one-dimensional variable block scheme, similar
to the one used for CSR-DU sequential units. They also discuss column reordering
techniques that aim to align the non-zero elements in a row in consecutive locations
as much as possible. CSR-DU could benefit from similar reordering techniques
towards two directions: (a) creating larger sequential units and (b) creating denser
units that require smaller delta values. Although not equivalent, the latter is strongly
related with matrix bandwidth reduction techniques than have been extensively
studied in the past because they relate to SpMxV cache performance [Temam and
Jalby 1992; Pichel et al. 2004].
One of the few works that explicitly targets the compression of the index data

is [Willcock and Lumsdaine 2006]. In this paper, Willcock and Lumsdaine pro-
pose two methods: DCSR, which compresses column indices using a byte-oriented
delta encoding scheme to exploit the highly redundant nature of the col ind array
and RPCSR, which generates matrix-specific dynamic code by applying aggressive
compression on column indices patterns for the whole matrix. We will focus our com-
parison on the DCSR method, which operates on the same level as CSR-DU. DCSR
encodes the matrix using a set of six command codes for primitive sub-operations

ACM Journal Name, Vol. V, No. N, Month 20YY.



Exploiting Compression Opportunities to Improve SpMxV Performance · 27

that can be used to implement the SpMxV kernel. Examples of such sub-operations
are the increment of the current row and column index, and the multiplication of
a number of the matrix values with the appropriate vector elements. A significant
performance problem of this approach is that the decoding of these sub-operations
must be performed very often, which results in frequent mispredicted branches. This
problem is dealt by a form of unrolling where patterns of frequent instances of six
of these sub-operations are grouped together allowing them to be executed sequen-
tially, i.e., without branches. Contrarily, our approach, which is also based on delta
encoding, tackles the problem of branch misprediction performance penalties in a
more basic level by being more coarse-grained. This allows for a much simpler and
general implementation, while sustaining a small performance gain gap compared
to the DCSR method. Moreover, it can handle worst-case scenarios of the DCSR
method such as matrices that exhibit large variation with regard to the patterns
encountered. A more detailed comparison of the two methods can be found in
[Kourtis et al. 2008b]. Another recent work that targets performance improvement
by reducing the index data volume is [Belgin et al. 2009], which proposes a matrix
representation that exploits repeated block patterns. The authors search for fre-
quently met block patterns and generate specialized inner loops for those, on top of
a dispatch logic. They provide an evaluation of a parallel version, but they focus
primarily on serial performance.

6.3 Value Compression

Despite that, in the common case, the value data constitute the larger part of the
working set of SpMxV, there has been little research effort targeting its reduction.
Lee et al. [2004] exploit matrix symmetry by storing only half the matrix, i.e., reduc-
ing matrix data volume by 50%. However, our methods can lead to larger than 50%
size reduction. For example, CSR-DUVI applied to the symmetric matrix boneS10

leads to a reduction of 88.1%. In the context of specialized hardware accelerators
for SpMxV, Moloney et al. [2005] discusses compression techniques for both index
and value data. Additionally, there exist a number of works in the general area
of scientific computation that are related to the value compression for the SpMxV
kernel. Keyes [2000], proposes the use of lower precision representation for data
that do not pose problems in the convergence procedure, while Langou et al. [2006]
propose mixed precision algorithms, which deliver double precision arithmetic, while
performing the bulk of the work in single precision. Even though these approaches
target more on the exploitation of characteristics of modern architectures (e.g., vec-
torization), they also contribute significantly to the required memory bandwidth
reduction. In a different context Burtscher and Ratanaworabhan [2007] propose a
method for the efficient compression of double precision floating point values tar-
geting network data transfers.

6.4 Multithreaded SpMxV

As far as the multithreaded version of the code is concerned, past work focuses
mainly on SMP clusters where researchers either apply and evaluate known unipro-
cessor optimization techniques (e.g., register and cache blocking) on SMPs, or exam-
ine reordering techniques to improve locality of references and minimize communica-
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tion cost [Im and Yelick 1999; Geus and Röllin 1999; Pichel et al. 2004; Catalyuerek
and Aykanat 1996]. Williams et al. [2007] present an evaluation of SpMxV on a set
of emerging multicore architectures. Their study covers a wide and diverse range of
high-end chip multiprocessors, including recent multicores from AMD (Opteron X2)
and Intel (Clovertown), Sun’s Niagara2 and platforms comprised of one or two Cell
processors. Their work includes a rich collection of optimizations, including some
that are targeted specifically at multithreading architectures on a set of 14 matri-
ces. In their conclusions they state that memory bandwidth could be a significant
bottleneck and advocate working set reduction techniques. It should also be noted
that one of the optimizations they apply is a simple index reduction technique, in
which 16-bit indices are used when this is applicable.

7. CONCLUSIONS

To improve the performance of the multithreaded SpMxV kernel, by alleviating the
contention on the memory subsystem, we proposed two sparse matrix storage for-
mats: CSR-DU and CSR-VI, that apply compression to the index and value data of
the matrix respectively. More specifically, CSR-DU applies a coarse-grained delta
encoding compression scheme for column indices, and optionally supports dense
one-dimensional blocks of variable length. CSR-VI, on the other hand, uses indirect
indexing for the numerical value data, and can be meaningfully applied to matrices
that exhibit a large percentage of common values. Moreover, we also considered the
combination of these two formats (CSR-DUVI), that employs both the aforemen-
tioned techniques.

We performed an experimental evaluation on two different multicore systems:
a typical SMP system (Harpertown), and a NUMA system (Nehalem). We used
a rich matrix set, with working sets large enough to preserve the memory bound
nature of the kernel. All methods demonstrated a noticeable improvement over
CSR and BCSR in both systems, when all available cores were employed. The
improvements were, as expected, larger on the Harpertown system, which also favors
more aggressive compression techniques, due to its restricted memory bandwidth.
Additionally, our proposed methods exhibited performance stability, since only a
small subset of our suite resulted in a significant slowdown compared to CSR.

In conclusion, as the number of processing cores increases, simultaneous access on
the shared system’s memory will be the primary performance restraining factor for
applications with streaming memory access patterns, such as SpMxV. Hence, we
argue that our approach designates a general optimization methodology for memory
intensive problems, where compression sacrifices CPU cycles to alleviate memory
pressure. As we have demonstrated for the SpMxV kernel, compression can po-
tentially lead to substantial performance improvements in multithreaded execution,
even if it leads to slowdowns in the uniprocessor case. However, not all memory
intensive applications are suitable for this technique. For compression to be bene-
ficial in this context, data should be fetched from memory multiple times, so that
compression overhead is amortized. Possible suitable kernels can be sought in ap-
plication domains such as graph and database algorithms.
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