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Abstract. Nowadays, seeking optimized data paths that can increase
I/O throughput in Virtualized environments is an intriguing task, espe-
cially in a high-performance computing context. This study endeavors to
address this issue by evaluating methods for optimized network device
access using scientific applications and micro-benchmarks.
We examine the network performance bottlenecks that appear in a Clus-
ter of Xen VMs using both generic and intelligent network adapters. We
study the network behavior of MPI applications. Our goal is to: (a) ex-
plore the implications of alternative data paths between applications and
network hardware and (b) specify optimized solutions for scientific ap-
plications that put pressure on network devices. To monitor the network
load and the applications’ total throughput we build a custom testbed us-
ing different network configurations. We use the Xen bridge mechanism
and I/O Virtualization techniques and examine the trade-offs. Specif-
ically, using both generic and intelligent 10GbE network adapters we
experiment with assigning network Virtual-Physical Functions to VMs
and evaluate the performance of a real scientific application using several
networking configurations (multiplexing in hypervisor-level vs. firmware-
level via IOV techniques). Preliminary results show that a combination
of these techniques is essential to overcome network virtualization over-
heads and achieve near-native performance.

1 Introduction

Today, with the advent of virtualization techniques, Cloud Computing in-
frastructures are becoming a great trend, providing flexibility, dedicated
execution and isolation to a vast number of services. These infrastruc-
tures, built on clusters of multicores, offer huge processing power, ideal
for mass deployment of compute-intensive applications. However, bridging
the gap between I/O techniques in virtualized environments and applica-
tion demands seems to be a major challenge. Numerous studies both in
native [1,2] and virtualized environments [3,4,5] explore the implications



of alternative data paths that increase the system’s I/O throughput and
help applications overcome significant bottlenecks in data retrieval from
storage or network devices.

Typical HPC applications often utilize adaptive layers to overcome
limitations that operating systems impose in order to ensure security,
isolation and fairness in resource allocation and usage. These layers are
usually communication libraries (e.g. MPI) or mechanisms to bypass the
general purpose kernel-algorithms for (i) process scheduling (CPU affin-
ity, process priority) and (ii) device access (user-level networking, direct
I/O techniques such as zero-copy, page-cache bypass, etc.). Intelligent in-
terconnects, suitable for HPC applications, provide adapters that offload
protocol processing and achieve fast message exchange. These adapters
feature specialized hardware such as DMA engines, volatile memory, I/O
or network processors and an interface to the physical medium. To avoid
the overhead associated with user-to-kernel–space communication, HPC
interconnects often utilize a user-level networking approach. To use such
a method in virtualized environments, several issues have to taken into
account.

Data retrieval from storage or network devices in virtualized environ-
ments is usually realized by software layers within the hypervisor, which
allow VMs to interface with the hardware. A common implementation
of such interfaces is a split driver model. These layers host a backend

driver that communicates with the native driver and the device, while
guest VM kernels host a frontend driver, exposing a generic device API
to guest user– or kernel–space. The backend, to exchange control infor-
mation and data with the frontend, exports a communication mechanism,
implemented using interrupt routing, page flipping and shared memory
techniques. This mechanism multiplies the already numerous data paths
and complicates the way data flow from applications to the network.

Similarly to operating systems, the hypervisor in virtualized environ-
ments multiplexes guest kernels which run on VMs and are not directly
aware of the underlying hardware. For example, for an application run-
ning in a VM to utilize a user-level communication mechanism, both the
VM kernel and the hypervisor (or the privileged guest) have to be no-
tified. Moreover, the application has to access specific resources on the
network adapter’s hardware. However, letting applications access I/O de-
vices without regulation raises security issues.

Currently, only a subset of the aforementioned adaptive layers is im-
plemented in virtualization platforms. For example, SR/MR-IOV [4] lets
VMs exchange data with the network via a direct data path, bypassing



the hypervisor and the privileged guest. This is realized using intelligent
adapters that directly export a part of their capabilities to VMs. Device
access by multiple VMs is then multiplexed in firmware running on the
hardware itself. Thus, VMs can communicate with the network without
the intervention of the Virtual Machine Monitor (VMM) on the critical
path. However, these features are only implemented for general purpose
networking adapters (such as Ethernet) and as a result, cannot be used
with High-performance interconnects such as Myrinet or InfiniBand.

Our work is focused on integrating HPC interconnect semantics into
the VMM split driver model [5]. We aim to decouple data transfers from
the virtualization layers and explore direct application-to-NIC data paths.
Nonetheless, the implications of this mechanism on the overall throughput
constitute a possible caveat of our approach: the way the control path
interferes with data communication may result in significant overhead.
Thus, in order to justify developing a framework to support standard
features of HPC interconnects (user–level networking, zero–copy etc.) in
VM environments, we need to examine the behavior of HPC applications
in such environments [6]. In this work, we deploy network benchmarks
and a real scientific application in a cluster of ParaVirtualized Xen [7]
VMs and present some preliminary results.

The rest of this paper is organized as follows: Section 2 presents net-
work performance measurements using common micro-benchmarks. In
Section 3 we describe the evaluation of an advective equation application
when deployed in a cluster of VMs over smart 10GbE interfaces. In Sec-
tion 4 we discuss evaluation issues and related work. Section 5 concludes.

2 Network Performance in Xen VMs

In this section, we evaluate various network configurations using two pop-
ular network micro-benchmarks. Our testbed consists of two host ma-
chines, connected back-to-back. The host machines (host0, host1) are two
dual quad-core Xeons@2.0GHz with two Neterion X3110 10GbE adapters,
hosting 8 dual-core VMs (node1 . . . node8) with 1.5GB of memory each.
To determine the optimum data path of our testbed, we consider three
configurations: NATIVE, the baseline of our testbed, running vanilla linux-
kernel; BRIDGED, the default Xen setup, where all network traffic crosses
the privileged guest (Dom0) either by copying or by granting the pages
that hold the frames to the specified guest; I/O Virtualization (IOV),
our optimized setup. Specialized network adapters export PCI functions
to the OS providing a direct VM-to-NIC data path.



We measure the bandwidth achieved by each VM separately on dif-
ferent hosts (node1 → node4, node2 → node6 and so on) and compare its
sum to the aggregate bandwidth measured in the Native case (Host0 →
Host1).

Table 1. Bandwidth (MiB/sec) achieved using netperf TCP STREAM test

node1 node2 node3 node4 total

NATIVE 811.73

BRIDGED 90.45 123.03 112.23 100.26 425.97

IOV 160.33 159.43 152.45 162.63 634.84

netperf: we used netperf [8] to test the maximum achievable band-
width that our testbed can sustain. Table 1 shows the bandwidth in MiB
per second. The bandwidth achieved in the BRIDGED case is about 65%
of the IOV case. On the other hand, IOV sustains 80% of the bandwidth
achieved with the NATIVE case, but remains bound at only 50% of the
theoretical maximum of the 10GbE link (1250MiB/sec).

Table 2. Bandwidth (MiB/sec) achieved using iperf TCP test (1 process)

node1 node2 node3 node4 total

NATIVE 1238

BRIDGED 205.00 190.00 181.25 172.50 748.75

IOV 221.25 222.25 221.25 220.00 884.75

iperf: to obtain further insight on the apparent degraded perfor-
mance, we used the iperf benchmark [9] (over TCP) and performed the
tests on all the previous configurations. Table 2 shows that the IOV config-
uration appears to be close to the NATIVE case, which sets the theoretical
maximum and outperforms the BRIDGED case by 140MB/sec.

3 Deploying an MPI application in a cluster of VMs

In order to project the results obtained by network benchmarks to a real
scientific paradigm, we deploy an HPC application on top of our mini
VM-cluster. Our application computes an advective process in a XxY xZ
space for a time window T [10]. We choose a fixed grid size (512x512x512,



Fig. 1. Communication pattern according to process placement when using all 8 VMs

T = 512), distributing X, Y or Z dimension across all processes (16 total
processes).

Our physical nodes (Host0 and Host1) provide 4 dual-core VMs each,
resulting in an 8-node, 16-core cluster (node1 to node8). Each process
communicates with its nearest neighbor, providing a linear communica-
tion pattern. We place processes across cores using three different place-
ment patterns (Figure 1): a. inter–node, b. intra–node, c. hybrid. At first,
we choose to place the processes (P1 . . . P16) in a way that data cross the
network in every MPI operation (inter-node). For example, P2 communi-
cates with P1 and P3: we place P2 on node5 in Host1 and P1,3 on node1,2 in
Host0 respectively. In order to study how the process placement influences
the application’s behavior, we then choose the intra-node communication
pattern: we place P1 . . . P8 on node1 . . . node4 in Host0 and P9 . . . P16 on
node5 . . . node8 in Host1. Thus, network communication occurs only be-
tween node4 and node5 (intra–node).

Figure 2 presents the execution time of the advective equation appli-
cation when using the inter–node and the intra–node cases. In the first
bar we plot the application’s performance on a native linux kernel setup.
In the second and third bar we plot the Xen case, with the BRIDGED
and IOV configurations respectively.

This figure raises some interesting issues: (i) in the IOV case, the
application execution time is almost half the time of the BRIDGED case
for the inter-node communication pattern and its performance achieves
63% of the NATIVE case; (ii) there is significant performance degradation
in the case of IOV in intra-node communication; this is expected due
to the fact that I/O Virtualization techniques optimize network access
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Fig. 2. Advective equation execution time for the linear case (1x1x16, 1x16x1, 16x1x1)

and, as a result, data flow directly from the VM to the adapter. In this
case, the optimized configuration seems to be the BRIDGED case. An
alternative, would be to provide a shared memory mechanism across VMs,
as presented in [11,12]; (iii) the speed-up obtained using IOV techniques
(Figure 2(a)) compared to the BRIDGED case is not proportional to the
bandwidth measured with micro-benchmarks.

To gain further insight on the scalability of the advective application
when adding cores, we deployed the application using 2 . . . 16 cores. To
provide a baseline we deployed the application in a 4-node cluster of ma-
chines identical to Host0,1 (32 total processes) using the inter-node place-
ment pattern. Figure 3(a) presents the computation time and total exe-
cution time vs. the number of cores for the NATIVE and the BRIDGED
case.

In general, it is important to note that the computation time is almost
the same for all cases. This is due to the fact that we use Xen in ParaVir-
tualized mode (PV) and, thus, the application is executed directly on the
physical cores (in this mode, the virtualization overhead is negligible, ≈
1 or 2%). Moreover, we observe that in the NATIVE case the communi-
cation part of the execution time becomes noticeable over 16 cores. This
performance degradation appears in the Virtualized environment as well,
and can be attributed to application characteristics. This issue must be
addressed in the NATIVE case. Since we are interested in the virtualiza-
tion overheads on the communication part of the execution, we can study
its behavior using 16 cores without loss of generality.

In the BRIDGED case, the application’s performance starts to de-
grade when we add more than 8 cores. Since computation time remains
the same in both cases, this degradation is due to the communication
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Fig. 3. Total Execution Time Breakdown for NATIVE, BRIDGED and IOV

overhead associated with the Xen bridge mechanism. We also plot the to-
tal execution time of the IOV case (the computation time appears to be
the same as in the NATIVE case). We observe a significant performance
improvement with IOV due to optimizations in the network layers. Di-
rect data paths allow messages to traverse the network, bypassing the
hypervisor or the privileged guest. IOV’s performance is nearly 80% of
the NATIVE case.

Figure 3(b) presents the execution time breakdown for the {XxY xZ} =
{2 . . . 16x1x1} process distribution using the inter–node communication
pattern. In the BRIDGED case (2nd bar), the negative scaling factor is
obvious as we add cores to the application. This negative factor is due to
the communication part of the execution (light part); the computation
part (dark part) remains constant. On the other hand, the IOV case fol-
lows the scaling pattern of the NATIVE case, with a constant overhead
due to virtualized communication layers.

Based on Figure 1, we can also examine the application’s behavior
when customizing the number of communication (inter– or intra–node)
messages needed for execution. The total number of MPI operations per
iteration between 16 processes is 15. Thus, according to the placement
pattern (Figure 1): in case a, all MPI operations traverse the network,
so the inter–node communication mechanism is the only means of data
exchange (15/15 = 100%); in case b, only one MPI operation crosses
the network, so the intra–node communication is dominant (1/15 ≈ 6%);
in case c, there are 7 inter-node messages, leading in a hybrid model,
which is the usual communication pattern in a native cluster of SMPs
(7/15 ≈ 46%).



 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0  10  20  30  40  50  60  70  80  90  100

S
pe

ed
up

 o
ve

r 
B

R
ID

G
E

D

Inter-node messages (%)

IOV 1x1x16
IOV 1x16x1
IOV 16x1x1
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We plot the speedup of the IOV case over the BRIDGED case vs. the
percentage of inter–node messages when distributing dimension X, Y or
Z across all 16 processes in Figure 4. We observe that when 50% of MPI
operations traverse the network, IOV outperforms the BRIDGED case by
at least 40%. The only case where one should choose the BRIDGED case,
is when network operations are lower than 20% of all MPI operations (for
example Figure 1 case (b)).

4 Discussion and Related work

In virtualized environments, the basic building blocks of the system (i.e.
CPUs, memory and I/O devices) are multiplexed by the hypervisor in
a secure, isolated and flexible manner. However, as HPC applications
often utilize adaptive layers to bypass general-purpose OS constraints,
the hypervisor should provide alternative mechanisms of data exchange
to VMs and applications. Towards this approach, we deploy a real HPC
application in a cluster of VMs in order to examine its behavior. Different
network configurations raise some interesting issues:

Xen Networking : Using I/O Virtualization techniques, our applica-
tion outperforms the generic case. Nonetheless: (i) IOV requires special-
ized hardware, specific software support and its capabilities are often
bound by hardware constraints; for instance, the number of Virtual net-
work interfaces available in our setup, depends on the number of the
adapter’s Rx/Tx queues; (ii) SR/MR-IOV is currently implemented for
ethernet adapters, enforcing all communication libraries to stack their



protocols above TCP/IP and Ethernet. HPC applications can benefit
greatly from an SR/MR-IOV implementation over custom interconnects
(Myrinet, InfiniBand), or over generic Ethernet, leaving all complicated
protocol stacks such as TCP/IP to only handle generic network traffic.

HPC applications in clusters of VMs : As shown in Section 3, the
computation part of the application’s execution time in Xen is the same
compared to the NATIVE case either in the BRIDGED or in the IOV
mode; the overhead associated with the virtual environment is solely due
to the communication part of the execution. Thus, by utilizing a direct
optimized data path, the application achieves nearly 88% of the NATIVE
case when all MPI operations traverse the network and 70% of the NA-
TIVE case when only one process communicates over the network (Fig-
ure 1 for the communication pattern and Figure 2 for the total execution
time, cases (a) and (b) respectively).

Several research papers [6,7], have analyzed Xen’s performance. In [6]
the authors investigate the overheads imposed by the Xen hypervisor us-
ing various linux kernel versions (including one custom-built) when run-
ning HPC benchmarks in VMs. They conclude that the perceived signifi-
cant overheads in HPC application execution due to virtualizations layers
are unwarranted. Based on this fact, we focus on the evaluation of Xen
from a networking and message exchange point of view.

In [11], the authors present a shared memory communication library
used for intra-node communication using the KVM hypervisor and achieve
near native performance in terms of MPI bandwidth. Huang et al. [12]
design an inter-VM, intra-node communication library, implement it on
top of a popular MPI library and evaluate its performance. They show
that a VM-aware MPI library, in conjunction with VMM-bypass data
paths [3] imposes very little overhead to the execution of HPC applica-
tions in VM environments. In this work, we evaluate the need to develop
a virtualization interconnection framework suitable for HPC applications
that can integrate high-performance interconnect semantics into popular
hypervisors such as Xen.

5 Conclusions and Future Work

We have presented preliminary performance evaluation results of a real
scientific application running in a cluster of Xen VMs. Our work demon-
strates the need for profiling application behavior prior to deploying HPC
applications in virtualized environments. We explore alternative data
paths for network communication between HPC applications that run



on clusters of VMs. Specifically, we have shown that for a given parallel
HPC application, its communication pattern has to be examined before
placing processes in VMs; for instance, our application in a generic Xeon-
based cluster using intelligent 10GbE adapters, behaves better when most
of the inter-VM communication occurs over the network. We should al-
so note that the computation part of the application execution is not
altered when migrating to a VM environment. These results show that
HPC applications can be executed in VM environments with very little
overhead, provided that their communication pattern is examined and
that all parallel processes are distributed in a way that data flow through
the optimum ad-hoc data path (direct or indirect). We plan on evalu-
ating message passing using shared memory techniques when processes
co-exist in VM containers. Our agenda also consists of evaluating higher
level frameworks for application parallelism based on MapReduce and its
extensions in VM execution environments.
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