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Abstract

This dissertation deals with data volume reduction techniques that aim to improve the perfor-
mance of memory-bandwidth starving applications. Although our methods can be successfully
applied to serial execution [KGK08], we concentrate on parallel shared-memory architectures
where memory bandwidth is scarce, but (pure) computation power plentiful. Our proposed tech-
niques aim at decreasing the non-scalable part of execution time (memory access), at the cost of
additional computation overhead. We argue that, since the additional cost is scalable, it will be
mitigated as core count increases.

We focus on the application domain of sparse computations. We show that the performance of
the sparse matrix-vector multiplication (SpMxV) — an important and ubiquitous scientific kernel
— on shared memory systems is restrained by the severe lack of available memory bandwidth.

To decrease memory contention and improve kernel performance we propose two compres-
sion schemes: CSR-DU, that targets the reduction of the matrix structural data by applying coarse-
grained delta-encoding, and CSR-VI, that targets the reduction of the values using indirect in-
dexing, applicable to matrices with a small number of unique values. Thorough experimental
evaluation of the proposed methods and their combination, on two modern shared memory sys-
tems, demonstrated that they can significantly improve multithreaded SpMxV performance upon
standard and state-of-the-art approaches.

Motivated by the design of CSR-DU, we generalize our approach and propose a storage for-
mat, called CSX, that aims at sparse matrix structure exploitation by supporting arbitrary com-
pression schemes. We describe a first implementation, based on delta run-length encoding, that
focuses on generality and neatness. Although our work is still under way;, initial experimentation
shows promising results — especially for matrices that are unable to benefit from CSR-DU.
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Introduction

In the beginning the- Universe- was created.
This has made- a lot of people-very angry
and, been. widely regarded as a. bad move-

Douglas Adams

Moore’s law describes a historical trend in processor technology, where the number of tran-
sistors that can be placed inexpensively on an integrated circuit doubles every two years. Un-
til recently, microprocessor designers have used the extra available transistors to improve serial
performance via frequency scaling and exploitation of instruction-level parallelism (ILP) using
techniques such as out-of-order execution, deep pipelines and sophisticated branch prediction.
In recent years, however, it has become difficult for this approach to achieve a desirable level
of performance improvement due to reasons such as heat and power budget constrains, design
complexity, and the reduced inherent ILP in user applications.

Although there were some recent research efforts aimed at boosting serial performance (e.g.,
[CSC05]), the industry seems to have decided that this approach is a dead end. Instead, archi-
tects turned to processors that incorporate multiple, usually simpler, cores in a single die. The
resulting processors are called chip multiprocessors (CMPs) or multicores [ONH'96] and are
becoming the norm in microprocessor design [PDG06, Gee05]. Multicore processor are able to
remain within power constrains and keep benefiting from Moore’s law by using the extra transis-
tors to add more cores. Essentially, instead of trying to exploit ILP, multicore processors aim at
the exploitation of a higher level of parallelism: thread-level parallelism (TLP).

This change in processor design has created a noticeable stir in the software world. Until
now, application performance was able to benefit from advances in processor design without
the need for programmers to modify their software. As multicore designs become the standard,
programmers need to adapt by abandoning single-thread programming and incorporate concur-
rency into their programs [Sut05, OH05, ABD"09]. The expected impact of this microprocessor
technology shift in software is illustrated by Olukotun and Hammond in the conclusion of their
article [OHO5]:



“[...] the transition to CMPs is inevitable because past efforts to speed up processor
architectures with techniques that do not modify the basic von Neumann computing
model, such as pipelining and superscalar issue, are encountering hard limits. As a
result, the microprocessor industry is leading the way to multicore architectures; how-
ever, the full benefit of these architectures will not be harnessed until the software in-
dustry fully embraces parallel programming. The art of multiprocessor programming,
currently mastered by only a small minority of programmers, is more complex than
programming uniprocessor machines and requires an understanding of new computa-
tional principles, algorithms, and programming tools.”

There are two major aspects of the transition to the multiprocessor programming paradigm
that need to be considered: programmability and performance. Parallel programming is generally
considered a hard and counter-intuitive task [MGM ™ 09]. Hence, since parallel platforms are be-
coming ubiquitous, the need for new software practices and tools that make the programmer’s life
easier emerges [SLO5]. For example the transactional memory approach [Gro07,ATKS07] aims at
simplifying parallel programming by replacing explicit locking with transactions. Nevertheless,
programmability alone is not enough. It is important to ensure that application performance can
scale as core count increases.

In this thesis, we tackle performance issues. Our work aims at improving the performance of
memory-intensive applications — applications whose performance bottleneck is (main) memory
bandwidth.* Memory-intensive applications usually have a low ratio of computation operations
to memory accesses and they are characterized by poor temporal locality. On multicore systems
these applications will frequently perform poorly, even if their parallelization does not create sig-
nificant overhead. The reason for this is the inability of most systems to deliver the required data
transfer rate when all cores simultaneously access main memory. The resulting delays will hurt
performance, especially if memory accesses are loads that subsequent instructions depend upon.

We direct our efforts towards sparse computations, an important application domain of sci-
entific computing. Sparse computations are used in several applications (e.g., partial differen-
tial equation solvers) and are usually concerned with sparse matrices, i.e. matrices that contain
a large number of zeroes. Specifically, we target the performance improvement of the sparse
matrix-vector multiplication kernel (SpMxV). This computational kernel, although very simple
in its essence, is difficult to optimize and has attracted much attention from researchers due to its
importance [AGZ92, T]92, CA96, Tol97, WS97, PH99,1Y99, Im00, GR99,1Y01, VDY 02, Vud03,
MCGO04,PHCR04,PHCR05,BELF07, VM05,KHK 05, WL06, WOV 09, Wil08, BBR09, KGK09b,
KGKO09a].

1.1 Contribution

This work explores the use of compression, i.e. data volume reduction techniques, to improve
the execution time of memory-intensive applications. The main challenge in this endeavor, as well

*We will use the term “memory-intensive” throughout this text to refer to applications whose main performance
impediment is memory bandwidth. Note, however, that in different contexts, this term may have a different meaning.
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as what differentiates our approach from typical compression schemes, is that size reduction is
not adequate to ensure success; we aim to improve performance, i.e., reduce execution time. In
other words, any possible computational overhead (e.g., decompression cost) should be amortized
before a method is deemed successful.

The contribution of this dissertation is summarized below:

» We investigate compression as a means to improve performance of memory-intensive ap-
plications by alleviating contention on the memory subsystem. We outline the require-
ments for such an optimization to be successful and we examine its relevancy on multicore
systems.

+ We study the performance behavior of the SpMxV kernel arguing that: (a) its performance
is restrained by limited memory bandwidth and that (b) it is a good candidate for applying
compression schemes to improve its scalability.

» We propose the CSR-DU sparse matrix storage format. CSR-DU compresses matrix struc-
tural data by applying coarse-grained delta encoding and exploiting contiguous elements.

« Based on the observation that several sparse matrices contain a significant number of com-
mon numerical values we propose CSR-VI: a specialized storage format that employs indi-
rect indexing to compress matrix values. Since CSR-DU operates on structural data, while
CSR-VI operates on numerical values, we also consider a combination of these two formats
called CSR-DUVL

« Finally, we attempt a first step towards a storage format that can support arbitrary com-
pression schemes. We call this format CSX and discuss an initial implementation for com-
pression schemes based on delta run-length encoding on multiple directions.

1.2 Outline

The thesis is organized as follows:

Chapter 2 builds the case for using compression to improve the performance of multithreaded
memory-intensive applications. First, we provide a brief overview of shared memory systems and
show the scalability problems of applications with large memory bandwidth requirements. Next,
we describe the proposed compression approach and discuss necessary conditions for its success.
The chapter ends with a case study of our method using bitwise operations on bitmap indices.

Chapter 3 provides an introduction to sparse computations. We present several well-established
sparse matrix storage formats, as well as their corresponding SpMxV implementations.

Chapter 4 is concerned with the performance of the SpMxV kernel on multicore systems.
First, we discuss the kernel’s implementation and analyze its performance characteristics. Next,
we introduce our experimental setup and present the results of a performance evaluation which
shows that SpMxV’s performance is restrained by limited memory bandwidth.



Chapter 5 presents the CSR-DU storage format — our approach for compressing the struc-
tural data of a sparse matrix using delta encoding. It starts with a discussion of our motiva-
tion and continues with the definition of the format. Several aspects of the format are shown,
including an extension for exploiting sequential elements. An experimental evaluation is also
preformed where it is established that CSR-DU can provide significant performance benefits for
multithreaded SpMxV.

Chapter 6 presents the CSR-VI storage format which applies compression to the numerical
values of matrices. Initially, we discuss the motivation behind our approach and, since not all
matrices are suitable for value compression, the conditions under which CSR-VI can be benefi-
cial. An experimental evaluation shows significant performance benefits for both CSR-VI and its
combination with CSR-DU (CSR-DUVI).

Chapter 7 discusses our initial approach towards a unified storage format called CSX. CSX
utilizes matrix-specific SpMxV routines and aims to support arbitrary compression schemes. We
discusses several classes of structural patterns and we present a general, yet relatively expensive,
approach for substructure detection. The chapter is concluded with a performance evaluation.

Finally, Chapter 8 summarizes conclusions and briefly discusses future work directions.



Background and key ideas

2.1 Shared memory systems

Shared memory systems [CS99, HP07] are a family of parallel architectures where multiple
processors operate on the same main memory. Until a few years ago, shared memory systems
were implemented, almost exclusively, via symmetric multiprocessing (SMP). SMP systems com-
prise of two or more identical processors that connect to a single main memory, usually via a bus
or similar interconnect (see Figure 2.1a). As in all shared memory systems, a cache coherence
protocol is responsible of maintaining data integrity between processor caches. The centralized
memory and the memory bus constitute the main performance bottleneck of SMP systems be-
cause requests from different processors need to be serialized.

cpu cpu

) )

memory bus

[ Main memory ] [ Memory node Memory node ]

(@) (b)

Figure 2.1: Typical shared memory systems. (a) an SMP system, (b) a NUMA system.

Hence, as the number of processing elements that share the memory increases, CPU design-
ers turn to more scalable designs like Non-Uniform Memory Access (NUMA) architectures (see
Figure 2.1b), where the memory is distributed among different nodes that are connected via a scal-
able interconnect (e.g., interconnects based on point to point links). In principle, each NUMA
node is local to a set of CPUs, and access to memory in this node is faster than access to remote
nodes. Obviously, this architecture mitigates the memory bandwidth bottleneck, since it allows
different CPUs to operate on different NUMA nodes. In general, these systems fall in the cate-



gory of shared memory systems since they provide a coherent unified view of memory for the
programs, and is up to the programmer or the operating system to distribute data in different
nodes to maximize performance.

The previous paragraph discussed shared memory configurations for separate processor chips.
These chips however can, and probably will given the recent multicore trend, implement CMP,
i.e., contain multiple processing cores that share a part of the cache hierarchy. For example, Fig-
ure 2.2 illustrates a quad-core processor. Each core in this example has its own private L1 cache,
and two pairs of cores share two L2 caches. The chip may connect directly to the main mem-
ory interconnection network, or via an off-chip cache that is shared between all processor cores.
Cache sharing is an important factor of the system’s performance and can be either construc-
tive or destructive, depending on the application and on whether threads scheduled on the cores
that share a cache operate on common data or not. Evidently, multicore processors intensify the
performance problem of concurrent accesses to main memory.

aEtaEcEen

L2 L2

'

main memory (or off-chip cache)

Figure 2.2: An example of a multicore processor with 4 cores. Each core has it's own L1 cache and
there are two L2 caches shared by two cores

2.2 Application scaling on shared memory systems

As it is illustrated by Amdhal’s law the possible speedup of an application in a parallel archi-
tecture is limited by the sequential fractions of the program. It is possible, however, that a shared
memory architecture results in serialization of program fractions that are, from the perspective
of the programmer, parallel. For example, in an SMP system that interconnects the various pro-
cessors via a bus, requests to main memory will be serialized. Hence, even if a program does not
contain any explicit serial fractions, it is possible that it would not scale linearly — as expected —
in a shared memory system. In the following paragraphs we discuss the implicit scalability prob-
lem that arises in shared memory architectures, even for fully parallelizable applications without
data dependencies.

The scalability behavior of a parallel application in a shared memory environment depends
on its data access pattern. Applications with no data dependencies and good temporal locality
scale well, since each core can work independently using local data residing in its cache, without
interfering with the operation of other cores. An example of a computational kernel with these
characteristics is matrix multiplication (MxM). The straightforward implementation of matrix
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for (i=0; i<N; i++)
for (j=0; j<N; j++)
for (k=0; k<N; k++)
CLil[3]1 += A[i][k] * B[kI[31;

Listing 2.1: Matrix multiplication for NV x N matrices

multiplication (C' = AB) for square matrices N x N matrices is presented in Listing 2.1.

Matrix multiplication performs O(N?3) operations on O(N?) data and is generally consid-
ered a cache-friendly algorithm due to its spatial locality. A blocking transformation is usually
applied (see A.1) to ensure that the data will be reused before they are evicted from the cache.
Moreover, matrix multiplication can be performed in a completely parallel fashion without data
dependencies between execution threads. As a result, MxM generally exhibits very good scala-
bility. Figure 2.3, presents scalability results for MxM on two different multicore systems. The
first system consists of two quad-core processors (8 cores total), while the second consists of four
6-core processors (24 cores total). A more detailed description of the systems is provided in 7.5.1.
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Figure 2.3: Matrix multiplication speedup for two systems. (a) a two-way quad-core system
(8 cores in total) and (b) a four-way 6-core system (24 cores in total).The size of the matrices is
2048 x 2048 single-precision floating-point elements. The optimal (linear) speedup is illustrated
with a red line.

Nevertheless, not all parallel applications can scale as well as the matrix multiplication kernel
in a shared memory system. Applications with frequent accesses on main memory tend to exhibit
poor scaling due to contention on the memory subsystem (e.g., applications with streaming ac-
cess patterns and limited spatial locality). To illustrate the congestion on the memory subsystem
and quantify the resulting performance bottleneck, we developed a benchmark to measure maxi-
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mum throughput when different threads read data from main memory. The benchmark allocates
and initializes large memory areas and subsequently performs read operations using streaming
instructions (see A.2 for a detailed description of the benchmark and 4.5.2 for additional experi-
mental results).
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Figure 2.4: Speedup for aggregate read memory throughput on two systems. (a) a two-way quad-
core system (8 cores in total) and (b) a four-way 6-core system (24 cores in total).The optimal
(linear) speedup is illustrated with a red line.

Figure 2.4 shows the speedup for aggregate read memory throughput on two multicore sys-
tems. Evidently, the available memory bandwidth on both machines is not adequate to allow this
benchmark to scale. Even though this workload is artificial, it serves as an illustration for the
scaling limitations of memory-intensive applications.

In a typical shared memory architecture we can assume that the execution time of each parallel
part of the program can be split in two parts: a scalable (computation and access to private caches)
and a non-scalable (access to shared memory). Under these assumptions we can express the
execution time with the following equation:

t:rc-d

+ bw, - d (2.1

Where:

n is the number of utilized threads.

d is the size of the data that need to be fetched from main memory. It depends on the
program accesses (e.g., temporal locality) and parameters of the cache hierarchy (cache
size, cache-line size, associativity, etc.)

7. is the time cost of the scalable computations per byte of data fetched from main memory.
It depends on the program’s operations and CPU speed.
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bw,, is the available memory bandwidth when n threads are utilized. It depends on the pro-
gram accesses (e.g., its spatial locality) and on the capabilities of the hardware, given the
topology of the utilized cores (hardware prefetching, interconnection network, etc.).

Modern processors and memory hierarchies are very complex systems. It is, therefore, diffi-
cult to model the parameters of Equation 2.1 to predict the actual performance of real-world ma-
chines, especially since modern processors can execute instructions out of order and in a specu-
lative way. Hence, to investigate the effect of these two parts on program execution for real-world
systems, we developed a micro-benchmark called memcomp (see also A.3). Memcomp executes
loops that perform a memory load and a variable number of computational operations. The pro-
gram loads an element from an array stored in main memory and c additions of this element to
a register.

We perform experiments using double-precision floating-point elements and an unrolled
loop that performs 64 loads (and 64 c additions) at each iteration. The results are presented in
Figure 2.5. Different graph lines represent different values of c. As expected, the scalability when
performing a single addition (¢ = 1) resembles that of the memory throughput benchmark. As
the number of additions are increased, computation becomes dominant in the execution time
and the benchmark gradually achieves scalable performance. The point where this change occurs
is highly dependent on the architecture.
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Figure 2.5: Memcomp benchmark speedup. Different lines represent different values of the ¢
parameter. We consider two systems: (a) A two-way quad-core system (8 cores in total) and (b)
A four-way 6-core system (24 cores in total).

There are systems, however, that are incompatible with our previous assumptions according to
which computations scale and memory accesses do not. For example, processors that implement
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TLP in a single core via technologies such as fine-grain multi-threading or simultaneous multi-
threading (SMT) [TEL95] are, generally, unable to scale for highly-optimized codes [AAKKO06,
AAKKO8].

Additionally, it is possible to construct a shared memory system with large enough available
bandwidth, such that all available threads can operate without contention on the memory sub-
system. An example is the Niagara 2 processor [SBB*07] which consists of 8 cores, each of which
supports 8 threads, for a total of 64 threads per CPU. Niagara 2 deviates from mainstream mul-
ticore chip designs, since it provides a large number of available threads and good memory per-
formance, at the expense of single core computing power. Figure 2.6 presents scalability results
from the memcomp benchmark, where it is illustrated that as the computation ratio increases,
the scalability of the benchmark is reduced. An additional comment to be made, is that the ab-
solute single-threaded performance is vastly inferior to that of the mainstream chips examined
previously.

L U USEUSESURES
14 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

cores utilized

Figure 2.6: Memcomp benchmark speedup on the Niagara 2 processor. The benchmark performs
aload operation of a double-precision floating-point value and c additions of this value to another
register. The different lines represent different values of c.

In the next paragraphs we focus on typical multicore architectures and investigate the idea of
improving the execution time of memory-intensive applications by applying data compression.
With regard to Equation 2.1, we aim at decreasing the non-scalable part of the execution time
(memory access), at the cost of inducing additional computational overhead. Since the additional
cost is scalable, we argue that, it will be mitigated as the number of cores increases.

2.3 Compression for optimizing multithreaded applications

Compression can be viewed as a trade of data volume for computation: it results in reduced
data volume at the cost of additional computational overhead. Traditionally compression is used
for reducing the time of data network transfers and provide efficient persistent storage in terms

14



of space requirements. We investigate the use of compression for improving the execution time
of multithreaded applications in shared memory architectures. Hence, based on Equation 2.1, if
we apply a compression scheme that reduces the data by a factor of a and results in an additional
computational cost by a factor of b, then the expression for the execution time ¢’ will become:

t’_<b’rc+bw">-d, ab>1 (2.2)
n a

Not all multithreaded applications are suitable for applying compression as a means for im-
proving execution time. In fact, this technique can be applied only to certain types of applications.
Next, we discuss the conditions that need to be met by an application, so that it can qualify for
the proposed techniques

(a) Memory bandwidth bottleneck. First, the application should be memory intensive — i.e., its
performance should be dominated by frequent transfers from (main) memory. If an applica-
tion is compute-bound, then its execution time is dominated by the . term in Equation 2.1.
Compression will increase this term by a factor of b, which will lead to a performance hit. The
latter is especially true for modern processors which are able to overlap computations with
memory transfers and hide the memory access latency. Applications that normally adhere to
this requirement are applications that exhibit poor temporal locality.

(b) Compressible data. An important requirement is the need for application data to be com-
pressible. If data are random, then factor a of Equation 2.2 will be close to 1, and compres-
sion will probably result in performance slowdown. It is expected, however, that fulfilment
of this condition would not be a problem for most real-world applications where data usually
express specific semantics and contain redundancies that can be exploited towards compres-
sion. Nevertheless, since an application can be used in different domains and thus operate on
different types of data, it is not always straightforward to determine a suitable compression
technique.

(c) Decompression cost mitigation. Additionally, it is required that the decompression run-time
cost is mitigated by the benefits of data volume reduction. This requirement is an important
differentiation from typical compression schemes, where the most important consideration
is the compression ratio. With regard to Equation 2.2, the benefits of factor a (compression
ratio) should outweigh the losses of factor b (decompression overhead).

As the number of cores increases, the effect of the decompression overhead on execution
time decreases (assuming that it falls into the scalable execution part). This can be demon-
strated in Equation 2.2 where n — oo leads to an execution time of (bwy,/a)-d. Nevertheless,
real-world machines contain a finite number of processing cores and, as a result, the decom-
pression overhead cannot be ignored. This condition is strongly associated with the specific
hardware implementation, since the actual decompression overhead and the benefit from
data reduction depend largely on the costs of the various hardware operations.

(d) Compression cost mitigation. Besides the decompression cost, however, we need to addition-
ally consider the compression overhead, which also needs to be mitigated. The compression
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overhead can be characterized as “hidden”, since we excluded it from the execution time ex-
pression because we assume that it can be performed oft-line. For a number of applications
this assumption is correct. A typical example are applications that perform a large number of
computations using the same data (e.g., by performing a large number of iterations). On the
other hand, applications that use the data only once do not satisfy the above condition and
will not benefit from compression in terms of execution time. An example for an application
that does not satisfy this requirement is data compression itself.

The latter condition seems contradictory with the characterization of applications with no
temporal locality as a good example for this technique. However, because caches are not
infinite, applications that operate on large amounts of data retain their streaming nature, even
if they are executed iteratively.

2.4 Case study: bitmap indices

Up until now we have limited our discussion in synthetic benchmarks (e.g., memcomp). The
issue that naturally arises is whether there exist real-world applications that satisfy the conditions
mentioned above and how they can benefit from compression. To elaborate on this issue, we
briefly investigate the applicability of our method using a real-world application: bitmap indices.
Although this case study is by no means comprehensive, it shows potential execution time benefits
for compression techniques when the number of utilized cores increases.

Indices are data structures used extensively in database systems [UGMWO01] and aim at im-
proving the speed of information retrieval operations. Although typically these structures are
implemented using B-trees, the alternative of bitmap indexing is gaining popularity in modern
database systems, especially for read-mostly environments (e.g., data warehouses). The simplest
form of a bitmap index on an attribute is a number of bit vectors —one per attribute value— each
of which represent the set of records that adhere to the specific attribute value. This is called a
Value-List index [OQ97], and an example is given in Table 2.1.

RID X bitmap index
(recordid) | (atribute) || X =0 X=1 X=2 X=3

1 1 0 1 0 0
2 0 1 0 0 0
3 2 0 0 1 0
4 1 0 1 0 0
5 3 0 0 0 1
6 3 0 0 0 1
7 0 1 0 0 0
8 1 0 1 0 0

bo by bo b3

Table 2.1: Example of bitmap indices for an attribute (X) that assumes four values (0-3). The
bitmap index for each of these values (by_3) appears as a column.

Information retrieval queries using bitmap indices are implemented using bitwise logical op-
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erations. For example, for the data in Table 2.1 a query for X > 0, would be answered by perform-
ing by OR by OR b3. We argue that this application is well-suited for the optimization described
previously: (a) it exhibits alow computation to memory accesses ratio and it usually involves large
data sets that do not fit into the cache, (b) the bit vectors are typically compressible, and (c) the
compression cost can be mitigated when operating on read-mostly environments. The remain-
ing requirement for the compression approach to be gainful is the decompression cost mitigation,
which is strongly dependent on the compression method used.

The compression of bitmap indices has been extensively studied in related literature [Joh99,
WOS06]. Although not directly motivated by the need to reduce the memory bottleneck, these
compression methods can be used in our evaluation. To investigate the potential benefits of the
compression tradeoft in terms of multithreaded performance we performed a number of experi-
ments using different compression approaches.

Figure 2.7 demonstrates the performance of an AND operation on two multicore machines
(8 and 24 cores in total) for three different compression schemes: lit, which uses uncompressed
(literal) bitmaps, zlib, which uses the zlib compression scheme [DG96, Deu96] and WAH, which
uses the WAH (Word-Aligned Hybrid) compression scheme [WOS06]. The results were obtained
using random-generated bitmaps with a bit density (probability of a bit being ‘1’) of 0.01*. The
performance of the uncompressed bitmaps (lit) achieves the best serial performance on both ma-
chines, but it is not able to scale as more processing cores are utilized. Moreover, a performance
degradation is observed after 12 cores in the 24-core system, which can be attributed to contention
on the main memory. The zlib compression scheme has significant decompression overhead and
although it is able to scale better than lit, its performance remains considerably low even for a
large number of cores. On the other hand, the wah scheme has low decompression overhead and
is able to achieve better performance than /it when a sufficient number of cores is used.

In conclusion our evaluation indicates that — in the context of multicore systems — use of
compression can act in benefit for performance of real-world applications, even if it degrades
performance in the serial case.

2.5 Conclusions

In this chapter we presented the key idea of our work — using compression for improving the
performance of memory-intensive applications on shared memory systems. In the remaining of
this thesis we apply our ideas to the domain of sparse-matrix computations and specifically to the
SpMxV kernel. The next chapter provides an introduction to these concepts.

*Smaller values would lead to insignificant size reduction (or even increase), while larger values would lead to very
fast optimized AND operations for the WAH compression scheme

17



AND operation performance, p=0.01

lit —E—
Zli B
14 L wah o o

Performance (bytes/cycle)

AND operation performance, p=0.01

1.8
lit —a—
zlib ---m---
1.6 - wah - @
[} "0'"0
1.4
.-© -8
% . o
S 1.2 .g'
L
g -
= 1
Ee)
[0
2
g 08
E
£
o 06
a
0.4 o
/'/'/ -
9 2o
(< -
0.2 Y T
o r__._,‘r
-
0
0 5 10 15 20 25
cores
(b)

Figure 2.7: bitwise AND operation performance. (a) a two-way quad-core system (8 cores in
total) and (b) a four-way 6-core system (24 cores in total).
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Sparse Matrices and Sparse Matrix-Vector Multiplication

3.1 Sparse Matrices

Sparse matrices are typically defined as matrices whose values are dominated by zeroes. How-
ever, the characterization of a matrix as sparse is usually not performed on the basis of a qualitative
criterion (e.g. the percentage of zero elements). Instead, a matrix is treated as sparse based on the
potential benefits that arise from such a treatment: “[...]a matrix can be termed sparse whenever
special techniques can be utilized to take advantage of the large number of zero elements and their
locations” [Saa03]. Based on the above definition we can derive a sufficient requirement regard-
ing the sparsity of a matrix: an N X M matrix is sparse if the number of its non-zero elements
is orders of magnitude smaller than V- M. Examples of sparse matrices that correspond to real
applications (taken from [Dav97]) are illustrated in Figure 3.1.

Sparse matrices are met in various scientific and engineering fields, and they generally arise
when studying systems that are loosely coupled. Large sparse matrices typically appear during
the discretization process when solving partial differential equations (PDE) [Saa03]. More specit-
ically, the typical way of solving PDE:s is to perform discretization employing techniques such as
the Finite Element Method (FEM), which usually results in problems with large sparse matrices.

Additionally, sparse matrices are used in the representation of large graphs using an adjacency
matrices. An example of such a graph is the World-Wide Web [KKR™99], where each vertex is a
page, and a directed edge from vertex A to vertex B (A — B) represents the existence of an URL
link in page A linking to page B. Generally, matrix sparsity and graph theory are subjects that are
closely linked: graph algorithms are employed for sparse matrices (e.g., for partitioning [HK99,
VBO05]), while graph algorithms can be expressed via sparse matrix computations [KCA09].

3.2 'The sparse matrix-vector multiplication operation

An important and ubiquitous operation for sparse matrices is the sparse matrix-vector mul-
tiplication (SpMxV), where a N x M sparse matrix is multiplied with a dense vector (of size M)
resulting in another dense vector (of size N): y = A - . We refer to y as the destination vector
and to x as the source vector. The general expression for the elements of the y vector is:
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Figure 3.1: Examples of sparse matrices from real-world applications. (source: [Dav97])

M
7=1

It is evident that zero elements do not contribute on the result and can be omitted. Hence,
the sparsity of a matrix can be exploited when performing the SpMxV operation by considering
only non-zero elements (A4;; # 0) during the computation.

The SpMxV operation is used in a large variety of applications in scientific computing and
engineering. It is the basic operation of iterative solvers, such as Conjugate Gradient (CG) and
Generalized Minimum Residual (GMRES), extensively used to solve sparse linear systems result-
ing from the simulation of physical processes described by PDEs [Saa03]. Moreover, a number
of graph algorithms can be expressed using adjacency matrix multiplication, and many of them
perform several iterations, where the iteration time is dominated by SpMxV [KCA09]. Examples
include link analysis algorithms such as PageRank [BP98]. Finally, SpMxV has been reported as
a member of one of the “seven dwarfs”, which are classes of applications that are believed to be
important for at least the next decade [ABC06].
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3.3 Sparse storage formats

The rest of this chapter is concerned with an important aspect of sparse matrices — sparse
storage formats. These formats are data structures that enable efficient storage and efficient op-
erations for sparse matrices. We start by discussing dense storage.

Typical schemes of dense matrices store the elements subsequently into memory. The space
used is equal to the total number of elements. In addition, a location function is used to determine
the position of a matrix element in the linear memory space. The most frequently used schemes
are row-major (C) and column-major (Fortran) order. For an N x M matrix, a row-major order
scheme stores the element a;; into the j + (¢ - M) location, while for the column-major order
scheme the same element is stored into the ¢ + (5 - ) location.

Sparse matrices use special storage representations to exploit the large number of zero values.
These storage schemes are generally build around the concept of storing only the non-zero values
of the matrix. This results in less storage size requirements, as well as more efficient operations
(e.g. SpMxV) since zero values usually do not contribute to the computation. Nevertheless, ad-
ditional information about the position of the non-zero values is required. Hence, we separate
the sparse matrix data into two categories: index data: data that are used for the representation
of the matrix structure and value data: data that represent the numerical values of the matrix.

In the following paragraphs we discuss several existing sparse-matrix formats. We focus on
matrices suitable for the SpMxV operation, where the matrix remains constant and random access
is not required.

3.3.1 Coordinate format

The coordinate (COO) format is one of the simplest forms of sparse storage. It stores the non-
zero elements along with their corresponding indices — their matrix location. For instance, the
COO format for a vector is called compressed sparse vector or simply sparse vector. In a sparse
vector format the non-zeroes are stored contiguously in an array val and the indices of these
elements are stored in another array ind. In other words, val[i] stores the element in position
ind[4]. An example of a sparse vector is illustrated in Figure 3.2a.

Similarly, for a two-dimensional matrix two index arrays are needed: one for the row (row_ind),
and one for the column (col_ind) of each non-zero element. Hence, the i-th non-zero element
has a value of val[i] and its coordinates are: (row_ind[7],col_ind[¢]). Figure 3.2b presents an ex-
ample for the storage of a two-dimensional matrix in the COO format. Each of the index arrays
(row_ind,col_ind) have a size equal to the number of the non-zero elements.

An issue that arises is the order in which the non-zero elements are stored. The COO format
does not impose a restriction on the storage of the elements. It is, however, common practice
to assume a specific order that bestows beneficial properties (e.g., good spatial locality) on al-
gorithm implementations. Typically, a lexicographical order on the coordinates is used. In this
case, elements of sparse vectors are stored in an increasing index order. For the ordering of two-
dimensional matrices, the row coordinate is considered first.
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Figure 3.2: Examples of the coordinate format (COO). (a) a vector, (b) a two-dimensional matrix.
Elements are stored in a lexicographical order

If the majority of the matrix rows do not contain a small number of elements and a lexico-
graphical order is used, the row_ind array will contain redundant information, as can be seen in
Figure 3.2b. The CSR format, described in the next paragraph, exploits this redundancy to reduce
the storage requirements of the sparse matrix.

3.3.2 CSR storage format

One of the most popular storage representations for sparse matrices is the compressed storage
row format (CSR) [BBC'94, Saa03]. CSR stores the sparse matrix as a number of sparse vectors
(one for each row) and allows random access to entire rows. More specifically, the matrix is stored
in three arrays: values, row_ptr and col_ind. The values array stores the non-zero elements of
the matrix in row-major order, while the other two arrays store indexing information: row_ptr
contains the location of the first (non-zero) element of each row within the values array and
col_ind contains the column number for each non-zero element. An example of the CSR format
for a 6 x 6 sparse matrix is presented in Figure 3.3.

The size of the values and col_ind arrays is equal to the number of non-zero elements (nnz),
while the row_ptr array size is equal to the number of rows (nrows) plus one. The CSR format is
considered a good default choice for the SpMxV kernel [Vud03]. Its implementation for a matrix
with IV rows is illustrated in Listing 3.1. The CSR SpMxV kernel consists of two loops: the outer
loop iterates over all rows of the matrix using the row_ptr array, while the inner loop computes
a single element of the destination vector. To assist the optimization process of the compiler
the code can be optimized to write the y[i] value at the end of the inner loop, by keeping the
intermediate result in a temporary variable that can be allocated in a register (see Listing 4.1).

for (i=0; i<nrows; i++)
for (j=row_ptr[i]; j<row_ptr[i+l1l]; j++)
y[i] += values[jl*x[col_ind[j]];

Listing 3.1: CSR SpMxV implementation.
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row_ptr :

Figure 3.3: Example of the CSR storage format

The CSR format can be considered a special case of what is referred as compressed stripe storage
[Vud03]. Another straightforward case of this class of formats is the compressed storage column
(CSC) format, which is similar to CSR, except that it uses columns instead of rows, i.e., it allows
random access to columns, which stores as sparse vectors. Another possible implementation
would be to store the matrix diagonals as sparse vectors.

3.3.3 Blocking formats

Over the years, a number of different storage formats aiming at the exploitation of specific
matrix structure for providing an efficient SpMxV operation have been proposed. One of the most
successful formats in that respect is the block compressed storage row (BCSR) [1Y01]. The BCSR
format can be viewed as a generalization of CSR, where unit of operation is two-dimensional
blocks (r x c¢), instead of individual elements. As CSR does not store zero elements, BCSR does
not store blocks that contain only zeroes. Thus, instead of storing the column index for each
non-zero element, BCSR stores per-block column indices. Moreover, BCSR keeps pointers to
block-rows (i.e. rows of blocks), instead of rows of elements. Obviously, The case of r = ¢ = 11is
equivalent to CSR.

Similarly to CSR, BCSR uses three arrays for the representation of a sparse matrix: (a) bval,
which stores the values for all blocks of the matrix in column- or row-major order — i.e., the j
value of block 4, is stored in location (i-7-¢) + j of the bval array, (b) bcol_ind, that stores the
block-column indices and (c) brow_ptr, which stores pointers to the first element of each block
row. Hence, assuming that a sparse matrix consists of nblocks blocks, the size of the bval array is
r-c-nblocks, the size of the brow_ptr array is the number of block rows (nbrows) plus 1: [ 2% 41,
and the size of the bcol_ind array is nblocks.

An example of the BCSR format is presented in Figure 3.4, where an 8 x 8 matrix is divided
into 2 x 2 blocks. As it shown in the figure, it is possible for the bval array to contain zeroes to
account for zeroes contained in blocks. This procedure is known as padding and it may result in
inefficiencies depending on the block shape (r x ¢) and the matrix structure.

The BCSR format shown in Figure 3.4 requires that aligned blocks at r row and ¢ column

23



46 93| 0 0 0 0 ]24 56
86 82| 0 0 0 0 |53 16
0o 010 0 |19 79| 0 O
A= 0 0] 0 0 |71 0] 0 O
0 0 |86 17|24 76| 0 O
0 0 (39 22|30 33| 0 O
0 010 0 |18 0 |79 12
0 010 0 0 78|10 53
brow_ptr : / 0 2l /3 5 7
bcol_ind : (0 6 4 2 4 \ 4 6)

46 93 2456 1979 8617 2476 18 0 79 1.2
8682 5316 71 0 3922 3033 0 78 1.053

/

bval: (4.6 9.3 8682 245653161979 7100...)

blocks :

Figure 3.4: Example of the BCSR storage format

boundaries, i.e. that each 7 x ¢ blocks starts at a position (7, j) such that: ¢ mod r = 0 and
j mod ¢ = 0 This approach provides the benefits of simpler construction of the BCSR format
and allows for easy vectorization, which can result in a positive performance impact [KGK09b].
A variation of the BCSR format that aims at reducing the necessary padding by relaxing the above
constraints is the unaligned BSCR (UBCSR) [VMO05].

for (i=0; i < nbrows; i++)
for (j=brow_ptr[i]; j < brow_ptr[i+i]; j++)
for (ir=0; ir < r; ir++) // rxc block multpilication
for (ic=0; ic < c; ic++){

y_idx = (i*nrows) + ir;

v_idx (j*r*c) + (ir*c) + ic;
x_idx = bcol_ind[j] + ic;
y[y_idx] += bval[v_idx]*x[x_idx];

}

Listing 3.2: BCSR SpMxV implementation. The first outer loop iterates over all block-rows. The
second outer loop iterates over all blocks of a specific block-row. The last two innermost loops
perform an r x ¢ block matrix-vector multiplication.

A simple implementation of the SpMxV kernel for the BCSR storage format is presented in
Listing 3.2, and it generally follows the structure of the CSR version. At the outermost loop, all
block-rows are iterated, while the second loop performs an iteration over all blocks of a block-row.
The two innermost loop perform appropriate computations for each r x ¢ block. This version of
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the kernel is general in the sense that it does not assume a specific block shape. Generating BCSR
SpMxV kernels for specific block shapes allows for various optimizations (e.g., register blocking
and vectorization), that can significantly reduce the execution time of the kernel. A BCSR SpMxV
kernel for 2 x 3 blocks is presented in Listing 3.3.

for (i=0; i < nbrows; i++){
yo = yl = 0.0;
for (j=brow_ptr[i]; j < brow_ptr[i+i]; j++){
x_start = bcol_ind[j];
v_start = j*2*3;

x0 = x[x_start];
x1 = x[x_start +1];

x2 = x[x_start +2];

y@ += bval[v_start] * x0;
yO += bval[v_start +1] * x1;
yo0 += bval[v_start +2] * x2;

yl += bval[v_start +3] * x0;
yl += bval[v_start +4] * x1;
yl += bval[v_start +5] * x2;
}
y_start = i*2;

yly_start] yo;
y[y_start +1] = y1;

Listing 3.3: BCSR 2 x 3 SpMxV implementation

The selection of the block shape for a specific matrix is an important aspect of the BCSR
format, one that has been extensively studied in related literature [Vud03, BELF07, KGK09a,
KGKO09b]. The optimal block shape selection for performing SpMxV is related not only to the
specific sparse matrix structure (e.g., to avoid padding), but also to the architectural characteris-
tic of the target processor (e.g., vector size, number of registers).

Aiming at flexibility in block shape selection, the Variable Block Row (VBR) format gener-
alizes BCSR by allowing arbitrary block shapes. Nevertheless, this generality makes the VBR
implementation complex, without providing any performance benefits [Vud03].

3.3.4 Formats for exploiting diagonal structure

Diagonal patterns arise frequently in sparse matrices, and for this reason several storage for-
mats aim to exploit these patterns. The diagonal (DIAG) format is specifically designed for sparse
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matrices that contain only full — or almost full — diagonals. Diagonals which contain exclusively
zeroes are discarded, while non-zero diagonals are stored fully, eliminating the need for indexing
information about individual elements.

We consider an enumeration of the matrix diagonals: the main diagonal is numbered 0, di-
agonals in the upper triangle have positive numbers and diagonals in the lower triangle have
negative numbers (see Figure 3.5). The DIAG format maintains two arrays: An array with s ele-
ments (diag) and an sx N array (val), s being the number of diagonals stored and /N the number
of matrix rows. For each diagonal 4, its number is stored in diag[¢] and its values are stored in
column 7 of val. Elements storage in val ensures that they retain their matrix row number. More
specifically, values of upper-diagonals are stored in val starting from the first row (0), while values
of lower-diagonals are stored so their final element is placed on the last row (/N — 1). Padding is
applied as necessary: upper-diagonals are padded from the top, while lower-diagonals are padded
from the bottom. The standard SpMxV implementation for this format is shown in Listing 3.4.

0. 1_ 3.
4.6>95~_0 7.6~ 0 0 0 0
AN S > ANUEERN .
0 NI~ 0520~ 0 0 0 diag: -3 0 1 3
\\ \\\\ \\ \\ >
0 0 N23NIIDN_ 07866 0 0 val: 16 95 76
-3 So N ~ ~ S : . . .
42 0 0 SN15W §.§\ 0 ~N9.T 0 L1 49 00
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A= AT ST N RPN 2o 00
SLES EENRQAN 0 D 42 15 33 97
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0 0 ~48°. 0 0 SB.0%46~_ 0 18 88 94 51
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Figure 3.5: Example of the DIAG storage format.

for (j=0; j < s; j++){
d = diag[j];
for (i=max(@,-d); i < N - max(0,d); i++)
y[i] += val[i][j] * x[d + i];

Listing 3.4: DIAG SpMxV implementation.

The DIAG format is efficient for matrices with full diagonals, but can be wasteful for matrices
without full diagonals. The row segmented diagonal (RSDIAG) format [Vud03] is an approach for
exploiting partial diagonals. RSDIAG divides the matrix into row segments (blocks of consecutive
rows), and assumes full diagonals within each segment.
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3.3.5 Composite formats

Storage formats try to exploit matrix structure regularities. Matrices with multiple types of
regularities can be divided into sub-matrices, each stored in a different format. We refer to this
class of formats as composite formats. Distributive operations (e.g., SpMxV) can be easily imple-
mented by performing the operation for each sub-matrix:

An example of a composite format is presented in [AGZ92]. In this work, Agarwal et al. de-
compose a matrix into three sub-matrices: the first is dominated by dense blocks, the second
has a dense diagonal matrix, while the third contains the remainder of the matrix elements. A
similar technique is described in [Vud03], where variable-block matrices are split into UBCSR
sub-matrices. In composite formats, each sub-matrix is more sparse than the original matrix, i.e.,
it generally retains the same dimensions but has less non-zero elements. This can lead to compu-
tational overheads that can reduce performance (e.g., empty rows when iterating elements).

3.3.6 Symmetric and hermitian matrices

A class of matrices that emerge often in applications are symmetric matrices (A4;; = Aj;).
These matrices can be stored in an optimized form, where symmetric elements are stored only
once, i.e., by storing only the lower (or upper) triangle along with the main diagonal. To im-
plement SpMxV for a symmetric storage format, each stored element with ¢ # j is used for
two operations (one for itself and one for its transpose). As a result the performance profile
of symmetric SpMxV is different than standard SpMxV for two main reasons: (a) computa-
tion load per element is doubled (b) random-access updates to y are performed. A similar class
of matrices are hermitian matrices, ie., complex matrices for which: A;; = A}, — that is:
RG(AZ‘]') = RG(AJZ) VAN Im(AZ]) = —Im(A]Z)

3.4 Conclusions

In this chapter we discussed several sparse-matrix storage formats, focusing on the SpMxV
operation. We distinguish two categories: general storage formats that do not assume specific
matrix properties (e.g., CSR), and specialized storage formats that try to exploit specific matrix
characteristics that are encountered frequently (e.g., DIAG). We should note that specialized stor-
age formats may result in inefficiencies, when applied to inapt matrices.

Although our treatment is by no means comprehensive, it serves as an introduction to the
necessary points for the rest of the text. More details about sparse computations and sparse matrix
storage formats can be found in [BBC194, Saa03, Vud03, Wil08].
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Sparse Matrix-Vector Multiplication performance

4.1 SpMxV algorithm

The nature of the matrix-vector multiplication algorithm results in memory-bound imple-
mentations imposing intense memory accesses. We will illustrate this property using a compar-
ison with matrix-matrix multiplication (MxM). Matrix multiplication of NV x N matrices A and
B results in an N x N matrix, that can be expressed as:

N
Cij = Ai- By
k=1

Using this (naive) algorithm*, computation of a single C' element requires /N multiplications
and N additions. Consequently, computation of all C' elements requires N3 multiplications and
additions. This is called the surface-to-volume effect, where the solution of a problem requires
O(n?) operations on O(n?) amount of data.

As discussed in Section 3.2, the resulting y vector of the matrix-vector multiplication can be
expressed as:

N
Yi = Z Aij -
j=1

This operation, namely dense matrix-vector multiplication, requires /N multiplications and
N additions for each element of y. Therefore, it performs O(n?) operations on O(n?) amount
of data, resulting in a significantly higher ratio of memory accesses to floating-point operations
compared to MxM. Seen from another point of view, there is little data reuse in the matrix-vector
multiplication, i.e., very restricted temporal locality. In fact, matrix elements are used only once.

If the matrix is sparse, index data lead to additional memory references and cache interfer-

*There exist algorithms for matrix multiplication with a lower complexity than O(n?). An example is Strassen’s
widely-known recursive algorithm with a complexity of O(n‘°927) ~ O(n?*') [CLRSO01].
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ence. In general, sparsity also creates irregular accesses to the input vector x. This irregularity
complicates exploitation of reuse on x and increases the number of cache misses. Providing a
through discussion of SpMxV performance, however, is a difficult task without assuming a spe-
cific sparse storage format. Thus, to provide a more in-depth analysis, we study the behavior of
SpMxV on the CSR storage format. We choose CSR as the baseline for our performance analysis
because it is a general format that performs well and it is widely used.

4.2 CSR SpMxV implementation

First, we discuss the CSR SpMxV implementation and analyze its memory references. Be-
cause we want to maximize performance, we optimize SpMxV so that the update on y vector is
performed at the end of the innermost loop. This optimization opportunity is not easily detected
by the compiler (mainly due to aliasing issues), and for this reason we use a temporary variable to
store the intermediate result in our code. The resulting code is presented in Listing 4.1. Initial ex-
perimentation confirmed that this optimization results in significant performance improvement.

As can be seen in Listing 4.1, each element of the output vector y[i] is computed by iterating
all elements of the i-th row. Specifically, all elements of the row are multiplied with the x element
that corresponds to their column. Summation of the resulting values leads to the desired outcome.
Figure 4.1 uses an example to illustrate these operations, and how they relate to SpMxV kernel
data structures.

4.2.1 CSR SpMxV memory accesses breakdown

Table 4.1 shows a breakdown of the CSR SpMxV data set and how it is accessed. The row_ptr
array has NV elements, which are accessed sequentially and only once. The values and col_ind
arrays are also accessed sequentially and only once, but have nnz elements. The x array is accessed
randomly, but in increasing order within each row. Moreover, it is the only array that exhibits
temporal locality, i.e., its elements are potentially accessed more than once. Finally, the y vector is
the only array where SpMxV stores results; its elements are updated sequentially and only once.
The preceding analysis clearly illustrates the streaming nature of the CSR SpMxV kernel and its
restricted temporal locality. Another important aspect of the kernel’s performance is its working
set, which is discussed in the next paragraph.

4.2.2 Working Set

We refer to the data accessed during the execution of the SpMxV kernel as its working set
(ws). The working set consists of the matrix and vector data; its size for the CSR storage format
is expressed by the following formula:

sparse matrix vectors
-

ws = (nnz - (Sige + Sval) + (nrows + 1) - s;4,) + (nrows + ncols) - Syq

In the above formula, s;4, and s, represent the storage size required for an index and a
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for (i=0; i<N; i++){
yr = 0.0;
for (j=row_ptr[i]; j<row_ptr[i+1l]; j++)
yr += values[j]*x[col_ind[]j]];
y[i] = yr;
}

Listing 4.1: CSR SpMxV implementation. The y[i] value is updated at the end of the inner loop

ToW.ptr : (0 2 5 6 9 12 16 )

/ \ (row limits)

colind: ( O 1 1 3 5 2 2 4 5 0 3 4 0 2 3 5)

\ \\ (indirect access)

X: ( zo 1 x2 T3 Ty x5 )

| A2 o

values: (54 1.1637.7881.1293729901.1451129371.1)

)

y: (yoy1y2y3y4y5)

Figure 4.1: Example of a CSR SpMxV operation

size accesses type R/W
row_ptr | N N sequential R
values | nnz nnz sequential R
col_ind | nnz nnz sequential R
x N nnz random,T R
y N N sequential W

Table 4.1: Breakdown of CSR SpMxV data set and their access patterns, for an N x N matrix.
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value, respectively. An approximation of ws is:
ws = nnz - (Side + Sval)

This approximation, which accounts only for arrays with nnz elements, is valid for the majority of
real-life sparse matrices because they satisfy: nnz > nrows, ncols. Commonly, a 4-byte integer
is used for index storage, due to memory size restrictions that limit x and y vectors to a maximum
of 232 elements. On the other hand, numerical data — especially for scientific applications (e.g.,
PDE solvers) — normally require double-precision, i.e., 8 bytes. Under these assumptions (s;q4, =
4, 5,41 =8) values constitute the larger portion of the working set by a factor of %5. For this reason,
value data compression is expected to have a greater impact to overall working set reduction.

The % factor is a result of memory size limitations (we implicitly have assumed that the sparse
matrix resides in memory) and can change in the future. Specifically, matrices with dimensions
larger than 232, require indices larger than 32 bits. We consider a square sparse matrix with
n = nrows = ncols = 232 and nnz = 100-n = 100-2324. The required CSR storage would
be 100 - 232 - (4 + 8) bytes ~ 4.7 TiB. Currently, only some high-end machines contain this
much memory. However, given the current rate of advancement, it is probable that near-future
commodity hardware will support these capabilities.

Using the previous working set approximation we can obtain the kernel’s ratio of memory
accesses to floating-point operations (FLOPs):

ws nnz - (4+8)
P FLOPSsotar nnz - 2 ytes/

In other words, CSR SpMxV performs one floating-point operation per 6 bytes of data. This
is a very high ratio and affirms our claim that the kernel is memory-bound. To make a connection
with the memcomp benchmark (see 2.2) this ratio corresponds to a c value of %.

As another example, we consider a CPU with a clock of f = 2 GHz, which can perform
o = 1 FLOP per cycle. In this case, the required data transfer rate is:

f-a-p=6-2-10=12~ 11.2 GiB/sec

Although this ratio is attainable by modern machines (see Section 4.5.2), utilizing more cores
will result in a multiplication of the required ratio by the number of added cores. As a result,
the memory subsystem would not be able to deliver the necessary data transfer rate, and the ker-
nel will exhibit poor scalability. Before presenting our performance evaluation of multithreaded
SpMxV, however, we discuss its parallelization.

+The number 100 has been chosen because it is close to the average value of nnz/n for our matrix suite (see
Table 4.3)
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4.3 Multithreaded SpMxV

The SpMxV kernel is an easily parallelizable kernel, since it does not contain any loop-carried
dependencies. Nevertheless, there exist a number of issues that should be taken into account
during the parallelization process. These issues are discussed in the following paragraphs.

4.3.1 Data partitioning

There are several data partitioning schemes for parallelizing the SpMxV kernel on a shared
memory architecture. For CSR, coarse-grained row partitioning is usually applied [WOV107],
where different blocks of rows are assigned to different threads (see Figure 4.2). Threads oper-
ate on disjoint subsets of row_ptr, col_ind, values, and y arrays. The only sharing occurs in x
array data, but it does not constitute a performance problem: access to x is read only, allowing
efficient data caching over all processors. Someone could argue that the common use of x offers
potential for constructive cache sharing. In practice this potential is not realized, since shared
data constitute a small part of the working set and cache space is limited.

A x y
o
i
threadO [}
[} Y
i i
[}
Y
o] = [
)
S o
9 B
threadl Q 3
e
s

Figure 4.2: Row partitioning on SpMxV for two threads.

The complementary approach to row partitioning is column partitioning, where each thread
is assigned a block of columns. Although this approach is more naturally applied to the CSC
format, it can also be applied to CSR. An advantage of column partitioning is that each thread
operates on a different part of the x vector, which allows for better temporal locality on the array’s
elements in case of distinct caches. A disadvantage, however, is the possibility of cache-line ping-
pongs, since each thread performs updates over all y elements. Having each thread use its own
y array eliminates this problem. The final result can be obtained by adding the partial y arrays.
Nevertheless, a problem with this approach, as described in [BFF'09] by Bulug et al., is that the
final accumulation does not scale, because one partial array per core is needed.

Block partitioning is the combination of the two aforementioned schemes where each thread
is assigned a two-dimensional block. It has the benefit of allowing configurable data sizes for
each thread. For this reason, it is applied when the available memory space is limited (e.g., in the
Cell processor [GHF106]). A work that discusses block partitioning in the context of distributed
memory parallel architectures is [VBO05].
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For simplicity, in the remaining of this dissertation, we assume that row partitioning is used
for parallelizing SpMxV. This simplification, however, does not have an effect on the validity of
our analysis, since we discuss issues orthogonal to the partitioning scheme used.

4.3.2 Load balancing

An important issue that arises when parallelizing the SpMxV kernel is load balancing among
different threads, i.e., how to distribute work so that each thread is assigned an equivalent vol-
ume of workload. A first approach is to assign the same number of rows to each thread. This
naive scheme, however, can lead to imbalance because the non-zero elements of a sparse matrix
are generally distributed unevenly across its rows. Consequently, if the sparsity pattern of the
matrix is biased towards the upper or lower half, row partitioning will yield poor results. Initial
experiments confirmed that this potential imbalance can have a negative performance effect on
a significant number of matrices.

A better approach is to apply static balancing based on the non-zero elements, instead of the
rows. In this case, each thread is assigned approximately the same number of elements and thus
the same number of floating-point operations (see Algorithm 4.1). An example of this scheme is
shown in Figure 4.3. In this example we consider two threads: the first thread is assigned the first
4 rows which contain 9 non-zero elements, while the second thread is assigned the remaining 2
rows which contain 7 non-zeroes. Note that a row balancing scheme would result in 5 elements
for the first thread and 11 elements for the second thread — a less balanced partitioning.

Algorithm 4.1: Balancing based on non-zero elements, when row partitioning is applied

Input : The number of non-zero elements (nnz2)
Input : The number of threads (nthreads)
Input : The row_ptr array

Output: A partition array

tid + 0 // current thread id
r<0 // current row number
partition[0] < 0 // first thread starts at @
for tid < 0 to nthreads do
elems + 0 // partition elements
limit < 2t // partition limit

while (elems < limit) do
L elems < elems + row_ptr[r + 1] — row_ptr[r]| // add row elements
r<r+1
partition[tid + 1] < r
nnz < nnz — elems

Although the aforementioned scheme distributes non-zero elements — almost — evenly among
threads, imbalances may still be observed in actual workloads. This is mainly due to the fact that
different sparsity patterns lead to different instruction streams regardless of the number of non-
zero elements assigned to each thread. For example, if a thread is assigned a large number of short
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Tow_ptr : ( (0 2 5 6) (9 12 16) )

colind: ( (0 1 1 3 5 2 2 4 5)(0 3 4 0 2 3 5))

values: ( (54 11 63 7.7 88 11 29 37 29)(90 11 45 11 29 37 11))

y: ( (yo Y1 Y2 y:;) (y4 y5) )

Figure 4.3: Example of non-zero elements balancing for two threads using matrix of Figure 3.3.

rows, then it will be further burdened from an increased amount of loop control instructions. A
more sophisticated partition scheme is, however, outside the scope of this thesis.

4.4 SpMxV performance

This section is concerned with the performance issues of the SpMxV kernel. First, however,
we need to clarify an important aspect of our methodology. To better simulate scientific appli-
cations that use SpMxV iteratively, we base our evaluation on performance measurements over
multiple consecutive kernel invocations, which induces temporal locality into our workload. For
this reason, we distinguish between two different matrix classes regarding SpMxV performance:
(a) matrices whose working set fits perfectly into the aggregate cache size — the size of all avail-
able caches — thus experiencing only compulsory misses, and (b) matrices whose working set is
larger than the aggregate cache size and experience capacity misses. We concentrate on the latter
matrix class.

There are several performance problems of SpMxV reported in related literature (a general
discussion of related works is presented in Section 4.6). These problems are listed below.

(a) No temporal locality in the matrix. This is an inherent problem of the algorithm which is
irrelevant to the sparsity of the matrix. Unlike other important numerical codes, such as MxM
and LU decomposition, the elements of the matrix in SpMxV are used only once [BELF07,
MCGO04].

(b) Indirect memory references. This is the most apparent implication of sparsity. In order to save
memory space and floating-point operations, only the non-zero elements of the matrix are
stored. To achieve this, the indices to the matrix elements need to be stored and accessed
from memory via the col_ind and row_ptr data structures. This fact implies additional load
operations, traffic for the memory subsystem, and cache interference [PH99].

(c) Irregular memory accesses to vector x. Unlike the case of dense matrices where the access
to the vector x is sequential, in sparse matrices this access is irregular and depends on the
sparsity structure of the matrix. This fact complicates the process of exploiting any spatial
reuse in the access to vector x [GR99, Im00, PHCRO04].

(d) Short row lengths. Although not so obvious, this problem is very often met in practice. Many
sparse matrices exhibit a large number of rows with short length. This fact may degrade
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performance due to the significant overhead of the outer loop when the trip count of the
inner loop is small [BELF07, WS97].

In [GKAT08] we discuss and evaluate the above performance issues on modern micropro-
cessors. For the sake of brevity we do not reproduce the full results here. Instead, in the following
paragraphs, we provide only a brief summary of our conclusions, focusing on the parts that are
relevant to this dissertation. The basis of our work is an extensive experimental evaluation of the
SpMxV kernel for single and multi-threaded versions on a variety of modern commodity archi-
tectures. Using a rich set of matrices and various metrics, ranging from floating-point operations
per second to processors” performance counters measures, we classify the effect of various SpMxV
performance bottlenecks. Based on this classification, we provide a ranked list of optimization
guidelines. According to our results, the steering performance impediment that should drive
any subsequent optimization efforts is the memory intensity, i.e., the large memory bandwidth
requirements, of the kernel. Optimizations that target other areas, e.g., computation, will have
small impact on overall performance when the memory subsystem is not able to deliver data in
time.

According to our study, the primary SpMxV optimization guideline is to reduce, as much
as possible, the working set of the algorithm. Reducing the working set will certainly increase
the computation to memory operations ratio, thus alleviating the pressure on memory bus and
give better chance to pending memory requests to be served in time. Examples of working set
reduction techniques include using 32-bit or 16-bit integers for the indexing structures of the
matrix, applying blocking schemes (as in [PH99,1Y01, BELF07, VMO05]) that effectively reduce
the size of indexing structures, or applying compression (as in [WL06]).

Motivated by this guideline, we developed three compression storage formats, which are dis-
cussed in chapters 5, 6 and 7. Prior to the discussion of these formats, we present the results of
an extended performance evaluation of SpMxV in modern multicore architectures over a rich
real-world matrix suite.

4.5 Experimental evaluation

The goal of our experiments is twofold: (a) to provide a quantitative evaluation of the SpMxV
performance on real-world hardware and, more important, (b) to illustrate the poor scalability
of SpMxV as a result of the memory bandwidth bottleneck. We perform experimental tests on
systems that correspond to the ends of the commodity hardware spectrum regarding memory
performance: an SMP system with centralized memory, and a new generation NUMA system,
with a strong architectural focus on memory throughput performance. Our results clearly indi-
cate that both systems are unable to deliver the required data transfer rate from main memory,
when all available cores are utilized.
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4.5.1 Experimental setup
Hardware

We conduct experiments on two systems. The first system is equipped with two quad-core
Intel Harpertown processors (see Figure 4.4). Cores operate at 2 GHz, include two private L1
32 KiB caches (instructions and data), and are grouped in pairs that share a unified 6 MiB L2
cache. The processors interface with main memory via the Intel 5000p Memory Controller Hub
(MCH) which provides four channels of fully buffered DDR2 DIMM (FB-DDR2) memory.

In contrast with Harpertown that uses a unique interface with main memory, the second
system consists of two Intel Nehalem# processors that implement a NUMA architecture. Each
processor has four cores that operate on 2.8 GHz; each core has private L1 (32 KiB instructions
and data) and L2 (256 KiB unified) caches, while cores of the same processor share an L3 (8 MiB
unified) cache. Moreover, Nehalem is equipped with an on-chip memory controller that supports
three DDR3 memory channels. Communication with other memory nodes and I/O devices is
implemented via QuickPath (QP) interconnect point-to-point links (see Figure 4.5). Additionally,
Nehalem cores implement simultaneous multithreading (SMT) [TEL95], providing two different
thread contexts per core.

As depicted in Figures 4.4 and 4.5, real-world systems usually employ a hierarchical topology
where different core sets share different parts of the memory hierarchy. To distinguish between
different scheduling configurations we will use a notation that explicitly describes the number of
threads used in each level of the hierarchy. The levels are represented as:

e t : SMT threads on the same core (Nehalem).
o c0: cores that share L2 (Harpertown)

o c1: cores that do not share L2 (Harpertown)

e c : cores that share L3 (Nehalem)

o d : different dies (Harpertown and Nehalem)

Table 4.2 provides a concise overview of the two processors used for our experimental evaluation.
Software

For our evaluation we compiled our code with gcc 4.3.2, and performed our experiments in
a 64-bit version of the Linux operating system (2.6.30). We explicitly parallelized all versions of
the SpMxV kernel using the pthreads interface of the GNU libc library (NPTL 2.7). Moreover,
we bound threads to specific cores using the sched_setaffinity() system call, and we allocated
memory from specific NUMA nodes using the libnuma library (version 2.0.2).

We set the default storage size for indices and values to 32 and 64 bits respectively. The exper-
iments were conducted by measuring the execution time of 128 consecutive SpMxV operations.

+An initial performance evaluation of a Nehalem system can be found in [BDH' 08].
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Figure 4.4: An 8-core system comprising of two Harpertown processors.
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Figure 4.5: An 8-core system comprising of two Nehalem processors.
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System Harpertown Nehalem
Model E5405 X5560
Frequency (Ghz) 2.0 2.8

L1 (data/instruction) 32k/32k 32k/32k
L2 (unified) 6M (1/2 cores) | 256k (1/core)
L3 (unified) - 8M (1/chip)
Multithreading configuration | 2c0x2clx2d | 2tx4cx2d

Table 4.2: Overview of the systems used in the experimental evaluation.

We made no attempt to artificially pollute the cache after each iteration, to better simulate itera-
tive scientific application behavior where matrix data are present in the cache hierarchy, because
either they have just been produced, or they were recently accessed. Additionally, we set x to be
the y vector of the previous iteration, so that our benchmark has similar behavior with scientific
methods based on SpMxV (e.g., GMRES). Setting y as x, however, restricts our matrix suite to
contain only square matrices.

4.5.2 Memory throughput benchmark

To quantify system limits and the role of the various micro-architectural characteristics, we
developed a benchmark to measure maximum throughput when a number of threads read data
from the main memory (see A.2 for more details). These measurements can be used to reveal
system performance trends for memory-intensive applications, such as the SpMxV kernel.

Results for the Harpertown system are shown in Figure 4.6, which illustrates the achieved
memory throughput for different scheduling configurations. As expected, scalability is poor. For
example, when all available cores are used, the memory throughput is increased only by a factor of
1.62 compared to the single thread scenario. This scalability problem is more intense for threads
that operate on the same die: two threads in the same core achieve only a 1.12 throughput increase
when compared to the serial case, while the same number of threads in different dies achieve about
1.54 increase. Another observation from the diagram is that concurrent memory accesses may
lead to performance degradation due to contention. For example, the throughput of 8 threads is
less than the throughput of the 2cex 2d configuration.

The results for the Nehalem system are presented in Figure 4.7. Figure 4.7a shows the achieved
memory throughput of one thread for three different NUMA memory allocation policies: (a) lo-
cal: allocation on the local node, (b) remote: allocation on the remote node and (c) interleaved:
alternating page allocation over all nodes. Local node allocation outperforms remote and in-
terleaved policy by a significant factor (1.51 and 1.25 respectively). A single thread achieves
11.1 GiB/sec when reading from a local node, which constitutes a 3.1 improvement over Harper-
town single-thread performance. Figure 4.7b presents results for various thread configurations
when using memory allocated on the local NUMA node for each thread. NUMA allows for good
scalability when different processors are used. The speedup achieved for two threads running on
different dies is — as expected — almost linear (1.96), and when all cores are utilized the speedup
is 3.27. It also is worth noting that when all cores are utilized the Nehalem processor outperforms
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the Harpertown processor by a factor of 6.25 (36.4 vs 5.9 GiB/sec) in this benchmark.

A comparison between these two systems shows a technology shift towards designs that focus
on memory throughput performance, and indicates the importance of the memory subsystem
for future multicore systems. Regarding SpMxV, we expect that the kernel will scale better in
Nehalem, especially if it is assured that data are distributed among NUMA nodes so that each
thread accesses local memory.
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Figure 4.6: Read memory throughput for Harpertown.
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Figure 4.7: Read memory throughput for the Nehalem. (a): Nehalem read memory throughput
for one thread and different NUMA allocation policies. (b): Nehalem read memory throughput
for different thread configurations. Local node allocation policy is used.
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4.5.3 Matrix suite

Iterative use of SpMxV induces temporal locality to the application. Hence, the streaming
behavior of the kernel is maintained only if the working set, and more specifically the matrix
data, is significantly larger than the system’s aggregate cache. For this reason, we build our matrix
suite using matrices with a CSR working set larger than 4 - 6 = 24 MiB, which is the greater
aggregate cache for the systems used in our experimental evaluation. Our matrix set consists of
50 matrices which are listed in Table 4.3.

name dim | nnz | size name dim | nnz | size

/103 | /105 | /1MiB /103 | /106 | /1MiB

boneS10 9149 | 55.5| 638.3 | G3_circuit 1,585.5 7.7 93.7
Idoor 952.2 | 46.5| 536.0 | cagel3 445.3 7.5 87.3
inline_1 503.7 | 36.8 | 423.3 | rajat30 644.0 6.2 73.1
£dif202x202x102 4,000.0 | 27.8 | 333.9| pre2 659.0 6.0 70.7
F1 343.8 | 26.8| 308.4 | Hamrle3 1,447.4 5.5 68.6
rajat31 4,690.0 | 20.3| 250.4 | largebasis 440.0| 5.6| 653
msdoor 4159 | 20.2| 233.2 | Chebyshev4 68.1| 54| 618
Freescalel 3,428.8 | 18.9| 229.6 | apache2 7152 | 4.8 57.9
Ga41As41H72 268.1| 18.5| 212.6 | s3dkq4m2 904 | 4.8 55.5
af_shell9 504.9 | 17.6 | 203.2 | ship_001 34.9 4.6 53.3
af_5_k101 503.6 | 17.6 | 202.8 | torso3 259.2 4.4 51.7
TSOPF_RS_b2383 38.1| 16.2| 185.2 | thread 29.7 | 4.5 51.3
kkt_power 2,063.5| 14.6| 175.1 ] ASIC_680k 682.9 3.9 46.9
Si41Ge41H72 185.6 | 15.0 | 172.5] large-dense 20| 40| 458
random100000 100.0 | 15.0| 171.8 | barrier2-9 1156 3.9 45.0
nd12k 36.0 | 14.2| 162.9 ] xenon2 157.5| 3.9 44.9
crankseg 2 63.8 | 14.1 | 162.2 | parabolic_fem 525.8| 3.7 441
pwtk 2179 | 11.6 | 134.0 | FEM_3D_thermal2 147.9 3.5 40.5
bmw3_2 2274 11.3 | 130.1 | sme3Dc 42.9 3.1 36.2
ohne2 181.3 | 11.1 127.3 | stomach 213.4 3.0 354
hood 220.5| 10.8| 124.1 | thermomech_dK 2043 | 2.8 33.4
Si87H76 240.4 | 10.7 | 122.9 | helm2d03 392.3 2.7 32.9
bmwcra_1 148.8 | 10.6 | 122.4 | ASIC_680ks 682.7 | 2.3 29.3
atmosmodj 1,270.4 | 8.8 | 105.7 | poisson3Db 85.6| 24| 275
thermal2 1,2280| 8.6| 102.9] rmal0 46.8| 2.4 27.3

Table 4.3: Matrix suite used for the experimental evaluation. Columns contain information about
each matrix: dim contains the number of rows and columns of the matrix in thousands (nrows =
ncols, since we consider only square matrices), nnz contains the number of non-zero elements in
millions and size contains the matrix size in MiB when stored in CSR format.

The majority of the matrices represent real-world problems and were selected from the Uni-



versity of Florida Sparse Matrix Collection [Dav97]. Our suite includes the fdif202x202x102
matrix, which is a matrix obtained by a 5-pt finite difference problem for a 202 x 202 x 102
regular grid created by SPARSKIT [Saa94], and two artificial matrices that represent the two
ends of the sparsity spectrum: (a) a dense 2000 x 2000 matrix (large-dense) and (b) a random
100000 x 100000 sparse matrix (random100000).

4.5.4 CSR performance evaluation

Figure 4.8 illustrates the average speedup of multithreaded CSR over all matrices, for different
thread scheduling configurations on the Harpertown system. The speedup for 8 threads is 1.9,
demonstrating the poor scalability of SpMxV. The speedup increase observed between the 2ce
and 2c1 cases — 1.17 and 1.23 respectively — can be accredited to matrix data caching during
consecutive SpMxV executions. Cases 2c1 and 2c@x2c1 achieve roughly the same performance,
even though available cores are doubled. We attribute this fact to the limited memory bandwidth
since, as is shown in Figure 4.6, the available memory throughput for 2 and 4 cores in a single die is
essentially the same. A more detailed view of SpMxV performance for Harpertown is presented
in Figure 4.10, illustrating the performance of individual matrices in FLOPS per second for all
different thread scheduling configurations.

A NUMA-oblivious multithreaded program can run unmodified in a NUMA system. How-
ever, there is no guarantee that data placement will be efficient. Thus, to maximize performance,
we developed NUMA-aware versions of our methods, where memory allocation ensures that data
accessed from a single thread are placed into the local NUMA node of the corresponding proces-
SOT.

Figure 4.9 presents results for the Nehalem system for two versions of the CSR SpMxV ker-
nel: default allocation (NUMA-oblivious) and local allocation (NUMA-aware). The large mem-
ory throughput capabilities of Nehalem result in noticeably better performance than Harpertown,
even for the NUMA-oblivious version. The NUMA-aware version further improves performance,
achieving a 4.44 speedup for the 4cx2d case. SMT threads utilization in this case, however, de-
grades performance (4.31). Figure 4.11 contains detailed experimental results for the perfor-
mance of the NUMA-aware SpMxV version.

Even though the Nehalem memory subsystem architecture drastically increases CSR SpMxV
performance, it is still far from the theoretical maximum, leaving room for performance improve-
ment by applying compression schemes. In the remaining of this dissertation, we present only
NUMA-aware versions for all methods on the Nehalem system to focus on cases that maximize
performance.

4.5.5 Summary

In conclusion, we argue that the SpMxV kernel is a good candidate for applying compression
schemes: (a) its performance is dominated by a memory bandwidth bottleneck (b) its data, at least
for real-world applications, are likely to contain redundancies that favour compression and (c) the
compression overhead can be amortized, since it is used in an iterative manner. We conclude this
chapter by discussing related work.
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Figure 4.8: Speedups achieved by CSR SpMxV on Harpertown. Gray points mark the speedup
for each matrix, while black points designate the average speedup achieved.
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Figure 4.9: Speedups achieved by CSR SpMxV on Nehalem. The “local node allocation” line
corresponds to a NUMA-aware version of the kernel, that binds matrix data in local NUMA
node memory. The speedup for Nehalem is obtained using the single-threaded performance with
default allocation, as the base performance. Gray points show the speedup achieved for individual

matrices when local-node allocation is used.
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4.6 Related work

4.6.1 Serial SpMxV

Because of its importance, sparse matrix-vector multiplication has attracted intensive scien-
tific attention during the past two decades. The proposal of efficient storage formats for sparse
matrices like CSR, BCSR, CDS (Compressed Diagonal Storage), Ellpack-Itpack, and JAD (Jagged
Diagonal) [PRAB89, BBC'94, Saa03] was one of the primary concerns. Elaborating on storage
formats, Agarwal et al. [AGZ92] decompose a matrix into three sub-matrices: the first is dom-
inated by dense blocks, the second has a dense diagonal matrix, while the third contains the
remainder of the matrix elements. By using a different format for each sub-matrix, the authors
try to optimize execution based on the special characteristics of each sub-matrix. Temam and
Jalby [T]92] perform a thorough analysis of the cache behavior of the algorithm, pointing out the
problem of the irregular access pattern in the input vector x. Toledo [Tol97] deals with this prob-
lem by proposing a permutation of the matrix that favors cache reuse in the access of x. Further-
more, the application of blocking is also proposed in that work in order to both exploit temporal
locality on x and reduce the need for indirect indexing through col_ind. Software prefetching for
the sparse matrix and col_ind is also used to improve memory access performance. The proposed
techniques were evaluated over 13 sparse matrices on a Power2 processor and achieved a signif-
icant performance gain for the majority of them. White and Sadayappan [WS97] state that data
locality is not the most crucial issue in sparse matrix-vector multiply. Instead, small line lengths,
which are frequently encountered in sparse matrices, may drastically degrade performance due to
the reduction of ILP. For this reason, the authors propose alternative storage schemes that enable
unrolling. Their experimental results exhibited performance gains on a HP PA-RISC processor
for each of the 10 sparse matrices used. Pinar and Heath [PH99] refer to irregular and indirect
accesses on x as the main factors responsible for performance degradation. Focusing on indirect
accesses, the application of one-dimensional blocking with the BCSR storage format is proposed
in order to drastically reduce the number of indirect memory references. In addition, a column
reordering technique which enables the construction of larger dense sub-blocks is also proposed.
An average 1.21 speedup is reported for 11 matrices on a Sun UltraSPARC II processor. Silva and
Wait [SW05] investigate the effect of keeping both indices and values in a single data structure.

With a primary goal to exploit reuse on vector x, Im and Yelick propose the application of
register blocking, cache blocking, and reordering [IY99, Im00,1Y01]. Moreover, their blocked
versions of the algorithm are capable of reducing loop overheads and indirect referencing while
increasing the degree of ILP. Register blocking is the most promising of the above techniques. The
authors also propose a heuristic to determine an efficient block size. They perform their experi-
ments on four different processors (UltraSPARC I, MIPS 10000, Alpha 21164, PowerPC604e) for
a wide matrix suite involving 46 matrices. For almost a quarter of these matrices, especially those
that contained dense sub-blocks derived from FEM discretizations, register blocking achieved
significant performance benefits. However, as the matrices were becoming increasingly irregular
with few dense blocks, the performance of the proposed approach degraded rapidly due to the
overhead imposed by the additional zero elements padded to form dense blocks. For highly ir-
regular matrices the method was not capable of finding any efficient block size, thus collapsing
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to the proposal of the standard 1 x 1 block. Geus and Rollin [GR99] apply software pipelining
to increase ILP, register blocking to reduce indirect references, and matrix reordering to exploit
the reuse on x. They perform a set of experiments on a variety of processors (Pentium III, Ultra-
SPARC, Alpha 21164, PA-8000, PA 8500, Power2, i860 XP) and report significant performance
gains on two matrices originating from the discretization of 3-D Maxwell’s Equations with FEM.
Vuduc et al. [VDY02] estimate the performance bounds of the algorithm and evaluate the reg-
ister blocked code with respect to these bounds. Furthermore, they propose a new approach
to select near-optimal register block sizes. Mellor-Crummey and Garvin [MCG04] accentuate
the problem of short row lengths and propose the application of the well-known unroll-and-jam
compiler optimization in order to overcome this problem. Unroll-and-jam achieves a 1.11-2.3
speedup on MIPS R12000, Alpha 21264A, Power3-II, and Itanium processors for two matrices
taken from the SAGE package. Pichel et al. [PHCR04] model the inherent locality of a specific
matrix with the use of distance functions and improve this locality by applying reordering to the
original matrix. The same group proposes also the use of register blocking to further increase per-
formance [PHCRO5]. The authors report an average of 15% improvement for 15 sparse matrices
on MIPS R10000, UltraSPARC 11, UltraSPARC 111, and Pentium III processors.

Buttari et al. [BELF07] provide a performance model for the blocked version of the algorithm
based on BCSR format and propose a method to select dense blocks efficiently. They experiment
on a K6, a Power3, and an Itanium II processor for a suite of 20 sparse matrices and validate
the accuracy of the proposed performance model. Vuduc et al. [VMO5] extend the notion of
blocking in order to exploit variable block shapes by decomposing the original matrix to a proper
sum of sub-matrices storing each sub-matrix in a variation of the BCSR format. Their approach
is tested on the Ultra2i, Pentium III-M, Power4, and Itanium II processors for a suite of 10 FEM
matrices that contain dense sub-blocks. The proposed method achieves better performance than
pure BCSR on every processor, except for Itanium II.

Willcock and Lumsdaine [WLO06] mitigate the memory bandwidth pressure by providing an
approach to compress the indexing structure of the sparse matrix, sacrificing in this way some
CPU cycles. They perform their experiments on a PowerPC 970 and an Opteron processor for
20 matrices achieving an average of 15% speedup. Another recent work that targets performance
improvement by reducing the index data volume is [BBR09], where Belgin et. al propose a matrix
representation that exploits repeated block patterns. The authors search for frequently met block
patterns and generate specialized inner loops for those, on top of a dispatch logic. They provide
an evaluation of a parallel version, but they focus primarily on serial performance.

4.6.2 Multithreaded SpMxV

As far as the parallel, multithreaded version of the code is concerned, past work focuses
mainly on SMP clusters, where researchers either apply and evaluate known uniprocessor op-
timization techniques on SMPs, such as register or cache blocking [IY99, GR99], or examine
reordering techniques in order to improve locality of references and minimize communication
cost [PHCRO04, CA96]. More specifically, Im and Yelick [IY99] apply register and cache blocking
on an 8-way UltraSparc SMP. They also examine reordering techniques combined with register
blocking. However, the results are satisfactory only in the case of highly irregular sparse ma-
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trices, but the scalability of the algorithm is still very low. Pichel et al. [PHCRO04] also examine
reordering techniques and locality schemes. They propose two locality heuristics based on row or
row-block similarity patterns, which they use as objective functions to two reordering algorithms
in order to gain locality. Results are presented in terms of L1 and L2 cache miss rate reduction
based mainly on a trace-driven simulation. The effect of these reordering techniques in load bal-
ancing is also discussed. Geus and Rollin [GR99] examine three parallelization schemes using
MPI combined with Cuthill-McKee reordering technique in order to minimize data exchange
between processors. Experiments are conducted on a series of high performance architectures,
including, among others, the Intel Paragon and the Intel Pentium III Beowulf Cluster. The authors
also outline the problem of the interconnection bandwidth while commenting on the results. In a
higher level, Catalyuerek and Ayakanat [CA96] propose an alternative data partitioning scheme
based on hypergraphs in order to minimize communication cost. Kotakemori et al. [KHK ™' 05]
evaluate different storage formats of sparse matrices on a SGI Altix3700 ccNUMA machine us-
ing an OpenMP parallel version of the SpMxV code. The authors implement a NUMA-aware
parallelization scheme, which yields almost linear speedup in every case.

Quite recently, Williams et al. [WOV 107, WOV 109] have presented an evaluation of Sp-
MxV on a set of emerging multicore architectures. Their study covers a wide and diverse range of
high-end chip multiprocessors, including recent multicores from AMD (Opteron X2) and Intel
(Clovertown), Sun’s Niagara2 and platforms comprised of one or two Cell processors. The au-
thors offer a clear view of the gap between the attained performance of the kernel, and the peak
performance of each architecture it is executed, both in terms of memory bandwidth and com-
putational throughput. Their work includes a rich collection of optimizations, some of which are
targeted specifically at multithreading architectures. They perform an experimental evaluation
on a set of 14 matrices. In their conclusions they state that memory bandwidth could be a sig-
nificant bottleneck and advocate working set reduction techniques. It should also be noted that
one of the optimizations they apply is a simple index reduction technique, in which 16-bit indices
are used when this is applicable. Finally, Bulug et al. [BFF'09], focusing on multicore architec-
tures, propose CSB — a storage format that aims to enable efficient execution of both the sparse
matrix-vector and sparse matrix-transpose-vector kernels.
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Column Index compression using Delta Encoding

5.1 Motivation and general approach

Sparse storage formats traditionally try to exploit contiguous elements, either in one (Fig-
ure 5.1a) or two dimensions (Figure 5.1b). Examples include the BCSR format, and the variable
length one-dimensional block format described in [PH99]. BCSR can be viewed as a generaliza-
tion of CSR where the granularity unit is an 7 x ¢ dense block. The effect to overall matrix size
when converting from CSR to BCSR depends on the aptitude of the selected block shape to cap-
ture the matrix structure. If resulting blocks contain a small number of zeroes, significant index
reduction is achieved. For example, perfect blocking — i.e., none of the BCSR blocks contain
zeroes — leads to an index reduction by a factor of 7-c. On the contrary, zeroes included in
BCSR blocks must be explicitly added to value data, because all BCSR blocks are stored in a dense
form. This, depending on the matrix structure and selected block shape, may lead to an increase
in overall matrix size.

SN B N N 0 0 O O
O O O 0O 0 0 O O
OO 00O 0 0 O O
O OO O0O0 O OO0 0O0
0000 O O 00O

—~
(S
=
—~
o
=

Figure 5.1: Sparse matrix patterns. (a) sequential elements, (b) two-dimensional blocks.

Our index compression approach is based on the general premise that sparse matrices have
dense areas that do not necessarily contain contiguous non-zero elements (i.e., areas where el-
ements are close but not sequential). These areas can contribute significantly to index data size
reduction when delta encoding is used to reveal the highly redundant nature of the col_ind ar-
ray [WLO06]. In a delta encoding scheme the column indices are replaced with deltas, each of
which is defined as the difference of the current index with the previous one. Within a row, delta
values are positive and less or equal than their correspoding column indices. Hence, delta values
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can be stored in smaller size integers, leading to index data size reduction. For example, Table 5.1
presents column indices along with the corresponding delta-encoded values, taken from the 33th
row of the rajat3e matrix (see Section 4.5.3).

indices‘ 40 41 450 1812 1840 3203 3233 3235 3241 3245
deltas ‘ 1 409 1362 28 1363 30 2 6 4

Table 5.1: Example of column indices and their corresponding delta-encoded values (taken from
matrix rajat3e).

A simple compression scheme to exploit delta encoding is to use variable-length integers. We
consider a method where the integer’s bits in its normal form are divided in 7-bits parts. These
parts are stored in consecutive bytes in which the most significant bit (MSB) is used to mark the

last byte of the integer. Under this scheme, an integer with a value of x needs 1 + UOgTQJCJ bytes of
storage. This can lead to significant index data volume reduction. For the example of Table 5.1,
column indices smaller than 27 = 128 will be encoded using 1 byte and all others using 2 bytes.
As a result, the total size required for column indices 41 to 3245 is 12 bytes. A CSR col_ind
structure, on the other hand, would require 9 - 4 = 36 bytes.

There is, however, a performance issue with variable-length integers. Normally, if each delta
value was encoded separately, the innermost loop of the SpMxV kernel would contain branches to
implement decoding (e.g., checking MSB to determine whether the integer includes other bytes).
Misprediction of these branches in execution time leads to significant performance degradation.
For this reason, instead of encoding each delta value to use only the necessary number of bytes, we
propose a coarse-grained approach where the matrix is divided into units with a variable number
of elements. For each of these units, the maximum delta value is calculated, and a size that can
represent this value is selected for all the delta values of the unit. This technique enables for
innermost loops with minimum overheads by sacrificing some space.

An important factor for the performance of this method lies in the selection of the unit size. If
the size is too small, the decompression overhead introduced will dominate the performance gain
from the compression. On the contrary, if the unit size is large, there will be less opportunities
for compression, because a single large delta value will enforce big storage requirements for the
whole unit.

This approach demonstrates an abstract optimization strategy for the SpMxV kernel, that can
be used to exploit matrix-specific structure information. To this direction the concept of units
could be extended to support more types of regularities, thus providing a number of advantages:
(a) It can be used to exploit local regularities in specific areas of the matrix, (b) It operates on
a coarse-grained level and thus can effectively minimize the introduced overhead by selecting
sufficiently large sizes and (c) it can bound the search space for regularities or patterns and assure
that the compression procedure will not exceed the available resources (e.g., time or storage). In
Section 5.2.2 we discuss a method for exploiting sequential elements, while Chapter 7 describes
a more general storage format towards this direction.

50



5.2 The CSR-DU storage format

The CSR-DU (CSR with Delta Units) storage format divides index data into units which are
stored in a single byte-array called ct1. Each unit is limited to elements of a single row and consists
of two parts. First, the header where the unit’s properties are stored. Second, the main body where
the delta-encoded column indices are stored. The header, in its simplest form, consists of two
one-byte fields: (a) usize, the number of elements the unit contains and (b) uflags, a bit-vector
encoding the unit’s characteristics. Since usize is stored in a single byte, the maximum possible
number of elements per unit is 28 = 256. The size (1, 2, 4 or 8 bytes)* of the delta values stored
in the main body can be extracted from the uflags field, along with a marker that designates the
beginning of a new row.

Figure 5.2 presents an example of the CSR-DU format. In this example a row with 8 elements
is split into two units. The first unit has 5 elements, 1-byte delta size, and a designator for a new
row (nr). The second unit has 3 elements, and 2-byte delta size.

col_ind

row_ptr
/’_\* 200

213 |

234

268 5 (28 |200| 13 | 21 | 34 | 55

323 3 |D16| 1679 3 4

2002 !
| header | _ body (delta values)

2005 | |

2009

Figure 5.2: Example of the CSR-DU storage format.

The compression procedure of CSR-DU is straightforward. It is performed in O(nnz) steps
by scanning the matrix elements once, while keeping appropriate information in buffers until
a unit is finalized. This means that the construction process of CSR-DU involves no overhead
in terms of time complexity compared to CSR. An important decision during this procedure is
when to finalize a unit. We implemented a simple approach where a unit is finalized if (a) a new
row starts in the next element, or (b) the maximum unit size is reached. An algorithm for this
procedure is shown in Algorithm 5.1 that uses a finalization function, described in pseudocode
in Algorithm 5.2, to append the necessary data to the ctl array. A more elaborate scheme would
be to finalize a unit if a new element increases the delta storage size, as long as the unit already
contains more than a predetermined number of elements.

*8 bytes delta values are unnecessary due to hardware limitations, but supported for completeness.
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Algorithm 5.1: Basic CSR-DU encoding procedure.

Initialization:
deltas «—[] // array of column deltas for current unit
newrow <—true // true if current unit starts a new row
Yprev +~—1 // previous element’s row number
Xprev ~—0 // previous element’s column number
foreach (X,Y') in Elements do
if Y # Y e, then // start of a new row
finalize(deltas, newrow)
deltas < [ |
newrow < true
Yprev «—Y
| Xprev 0
deltas.add(X — Xprev)
if deltas reached maximum size then // unit finalization check
finalize(deltas, newrow)
deltas < []
L newrow < false

Algorithm 5.2: Unit finalization: appending appropriate information to ctl array.

finalize(deltas, newrow):
set usize equal to the size of the deltas array

if newrow then
| set new row mark at uflags (nr).

switch max(deltas) do

case 1.. 28 // 1-byte storage
L set delta’s size to 1 byte at uflags (D8).

copy values of deltas array as 1-byte integers to body.
case 28 .. 216 // 2-bytes storage

set delta’s size to 2 bytes at uflags (D16).

copy values of deltas array as 2-bytes integers to body.
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The SpMxV implementation for the CSR-DU storage format is presented in Listing 5.11. Ac-
cess to the ctl array is performed via macros (e.g., ctl_get_ul6()) that return the appropriate
value and advance the array pointer as necessary. Initially, the uflags and usize header fields are
extracted from ctl. If the unit belongs to a new row, appropriate initializations are performed:
the y index is increased and the x index is zeroed. Finally, the appropriate multiplication code is
executed based on the unit type. The innermost loops implementing the multiplication code for
each case do not contain any branches, which allows for fast execution by the processor.

Parallelization is similar to CSR. For the row partitioning scheme, described in Section 4.3.1,
each thread needs an offset in the ctl, values and y arrays to mark the beginning of its data, and
the total number of rows that have been assigned to it.

The next paragraphs discuss extensions to CSR-DU format for performance improvement.

do {
usize = ctl_get_u8(ctl);
uflags = ctl_get_u8(ctl);
if ( flags_new_row(uflags) ){
y_indx++;
X_indx = 0;
}
switch ( flags_type(uflags) ){
case CSR_DU_US:
for (i=0; i<usize; i++) {
x_indx += ctl_get_u8(ctl);
yly_indx] += *(values++) * x[x_indx];
}

break;

case CSR_DU_U16:
for (i=0; i<usize; i++) {

x_indx += ctl_get_ul6(ctl);

y[y_indx] += *(values++) * x[x_indx];
}

break;

case CSR_DU_U32:

}

} while (values < values_end);

Listing 5.1: CSR-DU SpMxV implementation.

tNote that the code has been simplified to aid the presentation. For example the optimization for updating the y
value only at the end of the loop is not shown (see Section 4.2).
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5.2.1 Unit offsets

A problem with CSR-DU, as described in the previous paragraphs, is that the unit’s first delta
value can be significantly larger than the rest, imposing an unnecessarily large storage size for the
rest of the deltas. In the example of Figure 5.2 the density of the second unit’s elements allows for
1-byte delta values, but the large distance from the first unit dictates 2-byte storage. To counter
this problem, we modify the original CSR-DU format to include a column index offset from the
previous unit in the header. The offset is called ujmp and is stored as a (positive) variable-length
integer at the end of the header. This technique improves compression of the column indices at
no cost for performance since the change does not affect innermost loops. We implement the
variable-length integers using the scheme described in 5.1: each integer is divided in 7-bit parts,
which are stored in consecutive bytes; the final byte is distinguished by having its MSB set.

We consider the example of the two units in Figure 5.2. Figure 5.3 shows the encoding of
the second unit when unit offsets are used. In this case, unit offsets result in better compression
because deltas are stored in 1-byte integers. On the other hand, using unit offsets in the first
unit would lead to increased size because the first delta value (200) requires 2-byte storage in our
variable-length storage scheme (1 + ij = 2). This issue, however, appears only on a per-
unit basis, and selection of sufficiently large units amortizes potential losses. Listing 5.2 shows a
portion of the SpMxV implementation for CSR-DU with unit offsets: the offset is added to the x

index and the appropriate multiplication code is executed based on the unit type.
5.2.2 Sequential units

Although delta encoding can significantly reduce index data volume, it does not handle the
occurrence of sequential elements efficiently. If all unit elements are sequential, column indexing
information can be completely omitted. This, in addition to reducing the working set, eliminates
indirect accesses on x allowing for better optimization from both the compiler and the CPU.
Thus, in contrast with typical compression schemes, exploitation of sequential elements not only
reduces storage volume but also — potentially — decreases computational overhead.

We extend CSR-DU, in a way similar to the format presented in [PH99], to support units
containing sequential elements. An example of this unit type (sequential units) is illustrated in
Figure 5.4. Besides the usize and uflags fields, unit data also contain the column index offset
from the previous unit as a variable length integer. Note that if unit offsets are used, the last field
of the unit coincides with ujmp. Listing 5.3 shows the multiplication code for sequential units.

An important parameter that needs to be considered during the compression phase is the
minimum possible size for the sequential units. We will refer to this parameter as seq. Consecu-
tive elements of size less than seq will be encoded using delta encoding as described in previous
sections. Tuning of this parameter prevents performance degradation from sequential units with
small size. For example, if seq=1 then all units of the matrix will be encoded as sequential. This
will result in poor performance if the matrix does not contain enough sequential elements. In
general, the effect of seq on SpMxV performance depends on: (a) the architecture of the execu-
tion platform and (b) the structure of the matrix (e.g., frequency of sequential units).
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Figure 5.3: Example of a CSR-DU unit with offsets.

x_indx += ctl_get_varint(ctl); // unit offset (variable-length)
switch ( flags_type(uflags) ){
case CSR_DU_US:
yly_indx] += *(values++) * x[x_indx]; // first element
for (i=1; i<usize; i++) {
X_indx += ctl_get_u8(ctl);
y[y_indx] += *(values++) * x[x_indx];
}

break;

case CSR_DU_U16:
y[y_indx] += *(values++) * x[x_indx]; // first element
for (i=1; i<usize; i++) {

x_indx += ctl_get_ul6(ctl);

yly_indx] += *(values++) * x[x_indx];
}

break;

case CSR_DU_U32:

Listing 5.2: portion of the SpMxV implementation for CSR-DU with unit offsets.
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Figure 5.4: Example of sequential elements unit.

x_indx += ctl_get_varint(ctl);
switch ( flags_type(uflags) ){
case CSR_DU_SEQ:
for (i=0; i < size; i++){
y[y_indx] += *(values++) * x[x_indx + 1i]
}

x_indx += (size-1)

Listing 5.3: multpilication code for CSR-DU sequential units.

5.2.3 Alignment of ctl array values

Another issue with the CSR-DU format is that packing of delta values larger than 1 byte in
the ctl array may lead to unaligned storage. For example in the case of Figure 5.2 if the first
field of the ctl array is aligned then the three 16-bit deltas in the second unit are stored in an
unaligned manner. Some ISAs disallow unaligned access. Others (e.g., the x86 and x86_64 ISAs)
include instructions that allow unaligned access, but may result in performance degradation. In
our implementation, we pad the ucis sections in the ct1 array, so that the accesses of delta indices
are always performed in an aligned manner.
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5.3 Performance evaluation

5.3.1 Experimental setup

To evaluate CSR-DU, we performed experimental runs using several different combinations
for the method’s parameters. Versions with aligned deltas and unit offsets performed better or
similar than the rest, and so we present only them in the following results. Regarding sequential
units, we consider three cases: absence of sequential units (noseq) and sequential units with a
minimum of 8 (seq=8) and 4 (seq=4) elements. It should be noted that seq=4 performs more
aggressive compression than seq=8.

We compare CSR-DU performance against both CSR and BCSR. For the BCSR method we
performed experiments with a number of different block shapes configurationss, using special-
ized SpMxV versions (i.e., as the one in Listing 3.3). In the following results we demonstrate
best performing BCSR case over all available block shape configurations. Our setup is other-
wise similar to the one described in Section 4.5.1: we perform our experiments on two systems
(Harpertown and Nehalem), using a suite of 50 matrices (Table 4.3).

5.3.2 Results
Size reduction

Table 5.2 lists the compression ratios achieved for each matrix in our suite. The large-dense
matrix maximizes CSR-DU size reduction resulting in 24.9% and 33.2% ratios for noseq and se-
quential units, respectively. Compression ratios on other matrices vary largely, ranging from zero
(Freescalel) to close to maximum (TSOPF_RS_b2383). On average, CSR-DU reduces matrix data
by 14.2% for noseq, 19.3% for seq=8 and 21.1% for seq=4. BCSR, on the other hand, is not able to
efficiently capture the structure of matrices in our suite since it increases the size of 28 matrices.
BCSR averages a 13.2% size increase over all matrices and a 16.1% size decrease over matrices that
effectively compresses (22 matrices). Moreover, only for 2 matrices (F1, thermomech_dk) BCSR
achieves better reduction than CSR-DU seq=4. As these results illustrate, CSR-DU is more stable
than BCSR since by design it does not increase matrix size at any case — at worst size will remain
unaffected.

Harpertown

First, we discuss results on Harpertown. Figure 5.5 shows the average speedup of CSR, BCSR,
and CSR-DU over single-threaded CSR, for different thread affinity configurations. BCSR per-
forms worse than CSR on average for all cases, a result of the large number of matrices for which
BCSR increases their size. When all cores are utilized, CSR-DU methods perform better on av-
erage than CSR and BCSR. The seq=4 case achieves the best average speedup for 8 threads (2.45),
improving performance by 28.7% and 35.0% over CSR and BCSR average, respectively. An in-
teresting aspect of CSR-DU variants performance is that the best version for 8 threads (seq=4)
has the lowest performance in the serial case (7% slowdown compared to CSR). The latter exem-

tthe block shapes considered were: 1 x 2,1 x 3,1 x4,2x1,2x2,2x3,2x4,3x1,3x2,4x1,4x2
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size reduction (%) size reduction (%)
matrix name BCSR DU matrix name BCSR DU

may | noseq | seq=8 | seq=4 may | noseq | seq=8 [ seq=4
boneS10 225 16.6| 27.1| 30.0| G3_circuit -27.1 9.3 9.3 9.3
ldoor 9.5 69| 19.9| 30.1|cagel3 -56.2| 11.1 11.1 11.1
inline_1 224 47| 15.8| 22.8]rajat30 -31.6 9.9 10.7| 14.0
fdif202x202x102 -38.5| 159| 159| 159]|pre2 -38.5| 14.1 14.6 | 14.8
F1 22.3 58| 16.2| 21.0 | Hamrle3 -6.2| 17.8| 17.8| 19.6
rajat31 -39.3| 21.5| 21.5| 21.5]largebasis 157 0.7 19.2| 21.8
msdoor 10.2| 11.9| 22.3| 29.1|Chebyshev4 -28.3| 20.8| 26.0| 26.0
Freescalel -31.7 0.5 0.5 0.6 | apache2 -37.7] 159| 159| 159
Ga41As41H72 -169| 16.6| 21.7| 25.1|s3dkq4m2 16.7| 16.6| 31.8| 31.8
af_shell9 12.0| 16.6| 28.8| 30.9]ship_001 6.2 16.8| 28.7| 31.2
af_5_k101 12.1] 16.5| 28.8| 30.9]torso3 -254] 153] 153| 153
TSOPF_RS_b2383| 26.3| 21.0| 33.1| 33.1|thread 223 17.1| 26.5| 28.2
kkt_power -61.2 5.2 5.2 5.2 | ASIC_680k -32.6 7.5 9.1 10.9
Si41Ge41H72 -135| 16.6| 21.8| 25.7|large-dense 29.2| 249| 332| 332
random100000 -66.3| 16.7| 16.7| 16.7|Dbarrier2-9 -37.6| 16.8| 16.8| 17.3
nd12k 164 | 16.7| 29.3| 30.0|xenon2 194| 21.0f 21.0| 21.8
crankseg 2 58| 16.8| 25.8| 28.7|parabolic_fem -46.9 1.0 1.0 1.0
pwtk 14.1| 15.7| 31.3| 31.6| FEM_3D_thermal2| -13.7| 19.3| 19.3| 19.3
bmw3_2 74| 17.5] 259| 30.0|sme3Dc -58.0] 16.8| 16.8| 16.8
ohne2 -24.8| 16.7| 17.8| 20.0| stomach -29.7| 21.5| 21.5| 21.5
hood 10.4| 11.3| 22.5| 29.3|thermomech_dK 25,6 12.8| 12.8| 13.1
Si87H76 -29.6| 16.6| 20.4| 22.7|helm2d03 -52.1 1.4 1.4 3.8
bmwcra_1 224| 16.7| 25.7| 28.4 | ASIC_680ks -31.7| 17.8| 20.3| 223
atmosmodj -38.4| 16.0| 16.0| 16.0|poisson3Db -60.0| 17.1| 17.1| 171
thermal2 -42.5| 12.5| 12.5| 13.3|rmal0 53| 19.1| 26.1| 294

Table 5.2: Size reduction achieved by BCSR and CSR-DU compared to CSR. For BCSR we select
the block shape that achieved maximum size reduction.

plifies the negative effect of decompression computational overhead when the system’s memory
bandwidth is adequate to perform SpMxV without memory stalls.

Figure 5.8 shows the performance improvement of BCSR and CSR-DU over CSR for individ-
ual matrices, when all 8 cores are utilized. An important observation is that the CSR-DU method
does not exhibit significantly reduced performance over CSR for any matrix in our suite. For
BCSR, however, a significant number of matrices take a performance hit compared to CSR, due
to a significant size increase.

Figure 5.7 shows the association of size reduction and SpMxV performance improvement for
BCSR and CSR-DU. Since BCSR is computationally more efficient than CSR (e.g., by applying
register blocking), it improves performance even for the serial case on fitting matrices, i.e. matri-
ces whose size is reduced (Figure 5.7a). The additional benefit of alleviating memory bandwidth
pressure via size reduction further increases performance improvement when all 8 cores are uti-
lized (Figure 5.7c). On the other hand, CSR-DU imposes a substantial computational overhead
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that restrains performance improvement on the serial case (Figure 5.7b). When multiple threads
are utilized, however, the overhead is amortized and performance significantly improves (Fig-
ure 5.7d).

Selecting the optimal storage format is not a straightforward task, since performance depends
on the system architecture and the matrix structure in ways that are not always visible nor sim-
ple. Figure 5.6 depicts a breakdown of the best performing methods distribution for our matrix
suite. Concentrating on the full core utilization case for Harpertown, CSR-DU is a good universal
choice for our suite, since it achieves best performance for 43 matrices. For the same case, BCSR
achieves the best performance for 4 matrices and CSR for 3. When only one thread is utilized,
the best performing methods distribution is more balanced: CSR achieves best performance for
17 matrices, BCSR for 15 and CSR-DU for 18. In general, we argue that as long as the main bot-
tleneck is memory bandwidth, CSR-DU is a more promising option than BCSR and CSR. When
the memory bandwidth bottleneck becomes less severe, the computation overhead imposed by
decompression is not amortized, making CSR-DU less attractive.

Nehalem

Next, we present experimental results on the Nehalem system, where we only consider NUMA-
aware versions for the methods discussed. Figure 5.9 demonstrates the average speedup of con-
sidered methods over serial CSR. When all cores are utilized (4c x 2d), the best average speedup
for CSR-DU is 4.6 — a 12.2% and 11.7% improvement over CSR and BCSR averages respectively
— and is achieved by seq=8. Hence, even for the Nehalem system, where the memory bottleneck
is less severe, there is a margin for performance improvement by applying CSR-DU. Interest-
ingly, when all SMT threads are utilized (2t x4cx2d), CSR-DU average for seq=4 and seq=8 is
improved; all other methods result in a slowdown.

Figure 5.12 presents BCSR and CSR-DU improvement over CSR for each matrix in our suite
when all threads are utilized (2t x4c x 2d). CSR-DU performs worse than CSR for only five matri-
ces (helm2de3, sme3Dc, parabolic_fem, G3_circuit, Freescalel) and in some cases the difference
is marginal. Thus, we argue that, CSR-DU is fairly stable, even when the memory bottleneck is
alleviated by the system’s architectural characteristics.

The effect of size reduction on performance improvement for Nehalem (Figure 5.11) is qual-
itatively analogous to the one for Harpertown. The large memory bandwidth of Nehalem differ-
entiates results by restraining the benefits from compression even when all threads are utilized.
Hence, a notable number of points in the CSR-DU graph for 16 threads (Figure 5.11d) are below
the y axis, i.e. they perform worse than CSR.

Figure 5.10 illustrates the distribution of best performing methods. For a single thread, CSR
achieves the best performance for 19 matrices, BCSR for 22 and CSR-DU for 9. However, as
the number of cores utilized increases, CSR-DU becomes the most attractive option: for 4cx2d
CSR-DU performs best for 36 matrices, BCSR for 9 and CSR for 5.
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BCSR average is derived from best the performing case for each matrix over all considered block
shapes.
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5.4 Related work

A significant part of the SpMxV optimization techniques reported in the related literature re-
sult in index data reduction. Typical examples are blocking methods such as BCSR that store only
per-block index information. Traditionally the main focus of BCSR has been serial performance
improvement (e.g., via register blocking) and not working set reduction. For this reason, BCSR
has several disadvantages if used as a compression technique. First and foremost, depending on
the matrix structure, it may increase the total size of the matrix due to padding (see Table 4.3).
Secondly, it relies on constant-shape blocks, which limits its capability to adapt to more complex
matrix structures.

Pinar and Heath [PH99] describe a one-dimensional variable block scheme, similar to the one
used for CSR-DU sequential units. They also discuss column reordering techniques that aim to
align the non-zero elements of a row in consecutive locations as much as possible. CSR-DU could
benefit from similar reordering techniques towards two directions: (a) creating larger sequential
units and (b) creating denser units that require smaller delta values. Although not strictly equiv-
alent, the latter is strongly related with matrix bandwidth reduction techniques than have been
extensively studied in the past because they relate to SpMxV cache performance [T]92,PHCR04].

One of the few works that explicitly targets the compression of the index data is [WLO06].
In this paper, Willcock and Lumsdaine propose two methods: DCSR, which compresses column
indices using a byte-oriented delta encoding scheme to exploit the highly redundant nature of the
col_ind array and RPCSR, which generates matrix-specific dynamic code by applying aggressive
compression on column indices patterns for the whole matrix. We will focus our comparison
on the DCSR method, which operates on the same level as CSR-DU. DCSR encodes the matrix
using a set of six command codes for primitive sub-operations that can be used to implement
the SpMxV kernel. Examples of such sub-operations are the increment of the current row and
column index, and the multiplication of a number of the matrix values with the appropriate vector
elements. A significant performance problem of this approach is that the decoding of these sub-
operations must be performed very often, which results in frequent mispredicted branches. This
problem is dealt by a form of unrolling where patterns of frequent instances of six of these sub-
operations are grouped together allowing them to be executed sequentially, i.e., without branches.
Contrarily, our approach, which is also based on delta encoding, tackles the problem of branch
misprediction performance penalties in a more basic level by being more coarse-grained. This
allows for a much simpler and general implementation, while sustaining a small performance gain
gap compared to the DCSR method. Moreover, it can handle worst-case scenarios of the DCSR
method such as matrices that exhibit large variation with regard to the patterns encountered.

Another recent work that targets performance improvement by reducing the index data vol-
ume is [BBR09], which proposes a matrix representation that exploits repeated block patterns.
The authors search for frequently met block patterns and generate specialized inner loops for
those, on top of a dispatch logic. They provide an evaluation of a parallel version, but they focus
primarily on serial performance.
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Value compression using Indirect Accesses

6.1 Motivation and general approach

As mentioned in Section 4.2.2, values typically constitute the larger part of the working set of
a CSR sparse matrix because they require 64-bit storage. Hence, value compression is potentially
more beneficial than index compression in terms of working set reduction. Conversely with index
data, value data do not inherently contain redundancy in the general case. Moreover, the (lossless)
compression of floating point values is not as straightforward as integers, because floating point
arithmetic operations produce rounded results.

Nevertheless, we have noticed that a significant number of matrices from our experimental
set contain a small number of unique values, relative to the total non-zero values (nnz). From an
information theory perspective this results in low entropy for the value data, making them a good
target for compression. Since we aim at a computationally light decompression scheme we follow
a simple approach: instead of storing all the nnz values, we store only the common values and
pointers to them. If the total-to-unique values ratio is high enough, the working set data volume
will be reduced. Adequate size reduction can lead to SpMxV execution time decrease, despite
the overhead induced by indirectly accessing each value. In other words, our approach applies
a transformation in the value data, where a large number of numeric values is replaced with the
same number of indices and a much smaller number of values. Storing individual indices using
less space than individual values leads to data volume reduction. Next, we describe the specifics
of our proposed format, called CSR-V1.

6.2 The CSR-VI storage format

The CSR-VI (CSR with Values Indirect) format replaces the CSR values array with two arrays:
vals_unique and val_ind. The first contains only the unique matrix values. The second contains
indices in the vals_unique array for each of the nnz matrix elements. To achieve working set
size reduction, val_ind size must be significantly smaller than values size. A simple approach
towards this goal is to reduce the storage requirements of individual value indices compared to the
storage requirements of original values. Hence, in CSR-VI the value index size is determined by
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the number of the unique values that need to be addressed. For example, if there exist uv unique
values and 2% < uv < 219, then a 2-byte integer will be used for each value index. Although this
approach does not optimally compresses value indices, it introduces a small overhead because it
does not add any branches. An example of this value structure is presented in Figure 6.1, which
contains the values of the matrix shown in Figure 3.3.

values ( 54 11 6.3 7.7 88 1.1 29 3.7 29 90 1.1 45 1.1 29 3.7 1.1 )

valind  ( 0_ 1

vals_unique ( 54 1163 7.7 88 2.9°3.7 9.0 45 )

Figure 6.1: Example of the value indexing structure for the CSR-VT format.

CSR-V1 is a specialized method, i.e., it can be meaningfully applied only to matrices with a
large number of common values. To elaborate on the method’s applicability for a given matrix, we
define the total-to-unique (ttu) values ratio, as the fraction of the number of non-zero elements
(nnz) to the number of unique values (uv):

nnz

ttu = —

uv
A high ttu value indicates that the matrix is fitting for the CSR-VI method, while a small one
shows that CSR-VI will most likely result in slowdown. Using ¢tu and the storage size of value

indices (s,;) we can express the reduction on value data (x) when CSR-VTI is applied:

o Yesrvi UV Sea Nz Sei [ w LS\ (L Su
Vesr nNZ - Syal nNZ  Syal ttu  Syal

If we store individual value indices as integers with the minimum possible size, as discussed
previously, we can express their storage size s,,; as:

Lbyte, wuv <28 = 256
Spi =< 2bytes, 28 <uv <26 =65,536
4 bytes, 216 <wuv <232 =4,294,967,296

It is possible to further reduce the storage volume of value indices by using more elaborate
techniques. For instance, instead of using standard integers we could encode value indices using
only the necessary number of bytes ({M} ), or only the necessary number of bits (1 +
|log, uv]). These techniques, however, are more complex and induce additional decompression

overhead.
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CSR-VI compression can be implemented using a hash table and, as in CSR-DU, its complex-
ity is O(nnz). Algorithm 6.1 shows the compression procedure. The SpMxV kernel implemen-
tation for CSR-VT is shown in Listing 6.1. It can be easily derived from the CSR case by replacing
the access of values with an indirect access of vals_unique based on the value of val_ind. Even
though the resulting code contains an additional memory reference for each of the nnz elements,
it will lead to fewer data being transferred from memory when the number of unique values is rel-
atively small. Nevertheless, working set reduction alone is not sufficient to achieve performance
improvement; the additional overhead of indirect accesses must be amortized.

Algorithm 6.1: CSR-VI compression procedure.

Initialization:
h 6—»{ } // hash table for storing unique values
vis <[] // array of value indices
Uvs <4 [] // array of unique values

foreach V in Values do

if V not in h then
V14— uvs.size() // get (new) value index
uvs.add(V) // add current value to unique values
hlVal] < vi // store value index in hash table
else
{7 vi < h[Val] // restore value index from hash table
v1S.add (V1) // add value index in array

for(i=0; i<N; i++)
for(j=row_ptr[i]; j<row_ptr[i+1]; j++)
y[i] += vals_unique[val_ind[j]] * x[col_ind[j]1];

Listing 6.1: CSR-VI SpMxV implementation.

6.3 Combining CSR-DU and CSR-VI

CSR-DU and CSR-VI can be applied independently, because they operate on different data
sets: CSR-DU is concerned with index data, while CSR-VI with matrix numerical values. We will
refer to their combination as CSR-DUVI, a storage format that applies compression to both index
and value data. Obviously, CSR-DUVT is not a general format, but can only be applied to matrices
with a small number of unique values. The CSR-DUVI SpMxV kernel implementation is shown
in Listing 6.2.
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usize = ctl_get_u8(ctl);
uflags = ctl_get_u8(ctl);
if ( flags_new_row(uflags) ){
y_indx++;
x_indx = 0;
}
switch ( flags_type(uflags) ){
case CSR_DU_US:
for (i=0; i<usize; i++) {
x_indx += ctl_get_u8(ctl);
v_indx = *(val_ind++);
y[y_indx] += wvals_unique[v_indx] * x[x_indx];
}

break;

case CSR_DU_U16:
for (i=0; i<usize; i++) {

x_indx += ctl_get_ul6(ctl);

v_indx = *(val_ind++);

yly_indx] += wvals_unique[v_indx] * x[x_indx];
}

break;

Listing 6.2: SpMxV code for CSR-DUVI.

6.4 Performance evaluation

6.4.1 Experimental setup

Our experimental setup is similar to the one described in Section 4.5.1: we use two multicore
systems (Harpertown and Nehalem), 32-bit indices and 64-bit values, and a suite of 50 matrices
(see Table 4.3) as a starting point. Table 6.1 lists the number of unique values and the ¢t ratio for
each matrix. Since not all matrices are suitable for our method, we refine our set using the empiri-
cal criterion ttu > 5. Moreover, we discard matrices random100000 and large-dense because they
have randomly created values. The resulting subset has 22 matrices, which is a significant por-
tion of the original set. For NUMA-aware methods on the Nehalem system, data shared between
threads, e.g., the unique values array, are allocated using standard mechanisms (i.e., malloc()).
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matrix characteristics size reduction (%)
name uvals ttu VI DUVI

noseq [ seq=8 | seq=4
boneS10 40 1,386,710.6 58.0 74.6 85.2 88.1
1door 21,675,099 2.1 - - - -
inline_1 18,016,122 2.0 - - - -
£dif202x202x102 4 | 6,960,000.0 55.7 71.6 71.6 71.6
F1 13,038,962 2.1 - - - -
rajat31 3,985 5,098.2 46.4 67.9 67.9 67.9
msdoor 9,777,773 2.1 - - - -
Freescalel 9,418,239 2.0 - - - -
Ga4l1As41H72 3,597,854 5.1 20.3 36.9 41.9 45.4
af_shell9 968,711 18.2 29.4 45.9 58.1 60.3
af 5_k101 9,027,150 1.9 - - - -
TSOPF_RS_b2383 762,680 21.2 30.2 51.1 63.2 63.2
kkt_power 84,245 173.5 31.5 36.7 36.7 36.7
Si41Ge41H72 4,665,454 3.2 - - - -
random100000 10,000 1,497.8 - - - -
nd12k 4,857,071 2.9 - - - -
crankseg_2 4,397,887 3.2 - - - -
pwik 5,592,868 2.1 - - - -
bmw3_2 4,126,650 2.7 - - - -
ohne2 5,271,361 2.1 - - - -
hood 5,048,077 2.1 - - - -
Si87H76 334,180 31.9 31.0 47.6 51.4 53.7
bmwecra_1 3,153,346 3.4 - - - -
atmosmodj 4 2,203,720.0 55.7 71.6 71.6 71.6
thermal2 4,819,424 1.8 - - - -
G3_circuit 241 31,787.7 54.6 63.9 63.9 63.9
cagel3 417 17,936.1 49.0 60.1 60.1 60.1
rajat30 683,418 9.0 25.1 35.0 35.8 39.1
pre2 781,486 7.6 23.7 37.8 38.3 38.5
Hamrle3 53 104,042.3 53.6 71.5 71.5 73.2
largebasis 317 17,539.7 48.7 49.4 67.9 70.6
Chebyshev4 1,550,644 35 - - - -
apache2 40 120,446.8 55.6 71.5 71.5 71.5
s3dkq4m?2 74,283 64.9 32.1 48.7 63.9 63.9
ship_001 1,209,604 3.8 - - - -
torso3 3,121,632 1.4 - - - -
thread 2,085,970 2.1 - - - -
ASIC_680k 80,211 48.3 30.2 37.7 39.3 41.1
large-dense 32,767 122.1 - - - -
barrier2-9 1,095,875 3.6 - - - -
xenon2 93,364 41.4 31.3 52.3 52.3 53.1
parabolic_fem 259,125 14.2 27.3 28.3 28.3 28.3
FEM_3D_thermal2 1,880,768 1.9 - - - -
sme3Dc 2,358,393 1.3 - - - -
stomach 2,257,584 1.3 - - - -
thermomech_dK 1,967,432 14 - - - -
helm2d03 109,526 25.0 29.3 30.7 30.7 33.1
ASIC_680ks 40,708 57.2 44.5 62.3 64.7 66.8
poisson3Db 2,374,908 1.0 - - - -
rmal0 1,223,223 1.9 - - - -

Table 6.1: Size reduction of CSR-VI and CSR-DUVI over CSR. The columns of the table have
the following meaning: uvals is the number of unique values in the matrix, ttu is the total-to-
unique values ratio of the matrix and columns VI and DUVI show the size reduction achieved by
methods CSR-VI and CSR-DUVT respectively.
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6.4.2 Size reduction

The achieved compression of CSR-VI and CSR-DUVI over CSR for the selected matrices is
shown in Table 6.1. CSR-VI achieves an average reduction of 39.2%, the maximum and the min-
imum being 58.8% (bones1e) and 20.3% (Ga41As41H72), respectively. Combining CSR-VI and
CSR-DU further decreases matrix data volume: CSR-DUVT averages a size reduction of 52.4%
for noseq, 56.2% for seq=8 and 57.3% for seq=4.

6.4.3 CSR-VI

First, we present SpMxV performance results for the Harpertown system. Figure 6.2 shows
the average parallel speedup of CSR and CSR-VT over serial CSR. As expected, performance gain
from value compression is larger than index compression, since we consider 32-bit indices and
64-bit values for our reference CSR implementation. Even in the serial case, CSR-VI achieves a
12.4% performance improvement over CSR. As the number of utilized cores increases, memory
bandwidth bottleneck becomes more intense and working set reduction becomes more benefi-
cial. For 8 threads the average CSR-VI speedup is 2.75, which is a 51.7% improvement over the
corresponding CSR case. Figure 6.3 shows the performance improvement of CSR-VI over CSR
for each individual matrix, when all 8 cores are utilized. CSR-VTI leads to reduced performance
for only Ga41As41H72, which is the matrix with the lower tfu value (5.1) in our suite.

Next, we discuss CSR-VT results on the Nehalem system. The ample memory throughput
capabilities of Nehalem limit the potential CSR-VIbenefits. CSR is able to utilize a large portion of
these capabilities due to hardware prefetching. This technique, employed by modern processors,
detects easily-predicted memory access patterns (e.g., sequential) and prefetches successive data
into the cache hierarchy. Contrarily, CSR-VI performs random accesses on the vals_unique array;
these accesses cannot be predicted, leading to increased memory latencies.

As can be seen in Figure 6.4, CSR-VI performs worse than CSR in the serial case (slowdown
of 15%). In the 4c x 2d case, however, CSR-VI reaches a speedup of 4.13, which is a 8.6% improve-
ment over the corresponding CSR average speedup. When all available SMT threads at each core
are utilized (2t x4cx2d) CSR-VI average is increased to 4.23. For 2t x4cx2d, CSR-VI performs
worse than CSR for 6 matrices (Figure 6.5).

6.4.4 CSR-DUVI

Figure 6.6 shows that, on average, serial CSR-DUVI SpMxV performance on Harpertown
is similar to CSR. In the 2cox2c1x2d case, however, CSR-DUVI results in a significant parallel
speedup increase. More specifically, seq=8 achieves a speedup of 4.04, which improves upon CSR
and CSR-VI by 123% and 47%, respectively. Evidently, part of this large improvement is due to
matrices which now fit, in whole or in a significant portion, into L2 cache. Moreover, as can be
seen in Figure 6.7 CSR-DUVI improves performance over CSR for all matrices.

Regarding Nehalem, the best CSR-DUVI average speedup for 4cx2d (4.41) and 2t x4cx2d
(4.57) is achieved by seq=8 (Figure 6.8). The respective improvements over CSR-VI are 6.6% and
8.2%, and over CSR’s best performing case (4c x2d) 15.7% and 20%. Finally, there are 5 matrices
with reduced CSR-DUVI performance over CSR (Figure 6.9).
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Figure 6.2: CSR and CSR-VI average parallel speedup of SpMxV over serial CSR on Harpertown.
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Figure 6.3: SpMxV performance improvement of CSR-VI over CSR for individual matrices, when
all 8 Harpertown cores are utilized.
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Figure 6.4: CSR and CSR-VT average parallel speedup of SpMxV over serial CSR on Nehalem.
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Figure 6.5: SpMxV performance improvement of CSR-VI over CSR for individual matrices, when
all 16 Nehalem threads are utilized.
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Figure 6.6: CSR and CSR-DUVT average parallel speedup over serial CSR on Harpertown.
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Figure 6.7: Performance improvement of CSR-DUVT over CSR for individual matrices, when all
Harpertown 8 cores are utilized.
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Figure 6.8: CSR and CSR-DUVT average parallel speedup over serial CSR on Nehalem.
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Figure 6.9: Performance improvement of CSR-DUVT over CSR for individual matrices, when all
Nehalem 16 threads are utilized.
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6.5 Related work

Despite that, in the common case, the value data constitute the larger part of the working set
of SpMxV, there has been little research effort targeting its reduction. Lee et al. [LVDY04] ex-
ploit matrix symmetry by storing only half the matrix, i.e., reducing matrix data volume by 50%.
However, our methods can lead to larger than 50% size reduction. For example, CSR-DUVI
applied to the symmetric matrix bones1e leads to a reduction of 88.1%. In the context of spe-
cialized hardware accelerators for SpMxV, Moloney et al. [MGMMO05] discusses compression
techniques for both index and value data. Additionally, there exist a number of works in the
general area of scientific computation that are related to the value compression for the SpMxV
kernel. Keys [Key00], proposes the use of lower precision representation for data that do not pose
problems in the convergence procedure, while Langou et al. [LLL*06] propose mixed precision
algorithms, which deliver double-precision arithmetic, while performing the bulk of the work in
single-precision. Even though these approaches target the exploitation of characteristics of mod-
ern architectures (e.g., vectorization), they also contribute significantly to memory bandwidth
reduction. In a different context, Burtscher and Ratanaworabhan [BR0O7] propose a method for
the efficient compression of double-precision floating-point values, targeting network data trans-
fers.
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Enriched Matrix Structure Exploitation

7.1 Motivation and general approach

SpMXxV is, in itself, a simple kernel, yet its performance, both actual and maximum, varies
substantially for different sparse matrices. Variation on actual performance is exemplified in Fig-
ures 4.10 and 4.11, where the achieved FLOPs-per-second rates span a wide range of values. In
other words, SpMxV execution time depends strongly on the structure of the sparse matrix, i.e.,
the input data of the algorithm. Moreover, different sparse matrices have different potential for
performance improvement. For example we consider two matrices with the same dimensions
and the same number of non-zero elements: (a) a matrix with a full main diagonal and (b) a
matrix with one element per row, each element placed on a random column. Obviously, the first
matrix’s SpMxV execution time would greatly improve if it was stored in a format that exploits
diagonal structure (e.g., the DIAG format). On the other hand, it would be difficult to optimize
SpMxV performance on the second matrix, if column selection was truly random.

Usually real-world sparse matrices bear at least some structure on their elements as they rep-
resent relationships that arise from structured problems. A general storage format, like CSR,
does not make any assumptions about the matrix data, and thus it cannot exploit this structure.
On the other hand, specialized storage formats aim to improve SpMxV performance by taking
advantage of matrix-specific structural properties. Examples of typical structural forms and cor-
responding storage formats include two-dimensional blocks targeted by the BCSR format and
its variants (e.g., VBR), large diagonals targeted by the DIAG format, and contiguous non-zero
elements targeted by the format described in [PH99].

As shown by the preceding examples, most storage formats deal with only one type of struc-
tural regularity. To efficiently represent matrices with more than one type of regularity, composite
formats are used. In composite storage formats a matrix is split in sub-matrices, each stored in
a different format [AGZ92]. SpMxV is implemented in two steps: (a) do the multiplication on
each sub-matrix and (b) perform a reducing addition at the end.

CSR-DU, similarly with other storage formats, aims at exploitation of specific structural prop-
erties — dense areas and contiguous elements. A difference, however, is that CSR-DU is based on
the concept of units, i.e. specific structural forms (substructures) that are frequently repeated on
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the matrix. In its current form, CSR-DU is unable to efficiently represent all matrices, the most
prominent example being matrices with diagonal structures. To overcome this limitation we ex-
tend the concept of units to support several different substructures, providing greater flexibility
and eliminating the need for composite formats. We call the resulting storage format compressed
sparse extended (CSX) and argue that it can be used for a wide range of optimizations that exploit
matrix-specific knowledge.

The goal of CSX is to provide a framework for aggressively optimizing the SpMxV kernel
using matrix-specific features. To do this, each matrix is described as a sequence of units. Units
are characterized by their type and contain encoded information for generating matrix elements.
Each unit type represents a substructure that enables efficient storage of the unit’s elements. The
SpMxV kernel is implemented as an iteration over these units, where each unit is dispatched into
a specialized multiplication routine. Extra care must be taken to ensure that data shared between
these routines remain in a consistent state.

Ideally, the matrix, from its creation, would be efficiently described based on the substruc-
tures it contains. Currently, however, this not the case since sparse matrices are represented as
a series of (row, column, value) tuples (e.g., in the Matrix Market exchange formats [BPR96]).
Thus, substructures must be identified in a pre-processing phase, which induces potential over-
head. We provide an initial evaluation of CSX using some simple substructures described in the
following paragraphs. Our evaluation aims at investigating two issues: (a) the ability of the pro-
posed substructures to efficiently describe matrices and (b) the resulting performance benefit on
the SpMxV kernel when these substructures are exploited.

7.2 CSX substructures

7.2.1 Horizontal substructures

Using CSR-DU as a starting point, we observe that the encoding of sequential units is a special
case of performing run-length encoding on the delta values (e.g., Table 7.1). In CSX we generalize
the notion of sequential units to units with elements that have a constant distance. Thus, elements
of the form: (o, a + 9, + 29, . . .) are encoded using only their initial value (), their constant
distance (§), and their quantity. We refer to this encoding as delta run-length encoding and to
the generated units as DRLE units. The SpMxV code for this units type is shown in Listing 7.1.
The distance of the unit’s elements § is considered a compile-time constant, while unit size is
considered a run-time variable contained in the unit’s data.

indices 2 3(5(7(18|9(10| 11| 12|13 17
deltas 2 1{2(2 11| 1] 1] 1 1 4
run-length | (2,1) | (1,1) | (2,2) (1,6) (4,1)

Table 7.1: Example of delta run-length encoding.
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7.2.2  Vertical and diagonal substructures

To further enhance index compression, we augment DRLE units to include multiple direc-
tions for the sparse matrix elements. The directions we consider are vertical, diagonal and anti-
diagonal (Table 7.2) using the same rationale as in the horizontal case. Hence, DRLE units are
characterized by two parameters: direction and delta value. The multiplication code for vertical,
diagonal and anti-diagonal units is shown in Listings 7.2, 7.3 and 7.4, respectively.

. . Elements
Direction
Yy x
Horizontal — 20 xo + 6
Vertical 1 yo+1id o
Diagonal Ne | yo+id | xop+id
Anti-diagonal| " | yo + %0 | o — 0

Table 7.2: Directions for delta run-length encoding. The y and x columns contain an expression
for generating the matrix elements for the specific direction given its delta value §. Note that
0 <4 < size, where size the number of elements in the unit.

7.3 CSX matrix construction

7.3.1 Substructure detection

Our substructure detection algorithm handles the supported substructures in a uniform way.
The algorithm is based on a delta run-length encoding detector for the horizontal direction, which
detects sequences (runs) of the same delta value. If the number of elements in a run is larger or
equal than a specific configuration parameter, then the items are grouped together in a single
unit. The detector can be easily implemented if it is assumed that the elements are iterated in
lexicographical order. The detection algorithm pseudocode is shown in Algorithm 7.1.

indices: 1 1011 12 13 14|21 41 61 81

delta values: 1 9|1 1 1 1|7 20 20 20
1x4

Figure 7.1: Horizontal detection example.

To simplify the detection process, detection of overlapped runs is not supported. An example
is presented in Figure 7.1, where the detector has been configured to detect runs of size larger or
equal than 4. Note that it does not detect the run of the indices 41,61,81, since its size is 3, and it
also does not detect the run of the indices 1,41,61,81 since it overlaps with other elements.

In order to detect the rest of the substructures discussed in the previous paragraph, we use the
horizontal detector and apply appropriate transformations on the matrix elements coordinates.
For example, to detect vertical runs we swap the coordinates of the elements. The transformation
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xi x_indx;

yi = y_indx;

for (i=0; i < size; i++){
y[yi] += *(values++) * x[xi];
xi += DELTA;

Listing 7.1: SpMxV code for horizontal DRLE units

xi x_indx;

yi = y_indx;

for (i=0; i < size; i++){
y[yi] += *(values++) * x[xi];
yi += DELTA;

Listing 7.2: Code for vertical DRLE units

xi x_1indx;

yi = y_indx;

for (i=0; i < size; i++){
ylyi] += *(values++) * x[xi];
xi += DELTA;

yi += DELTA;

Listing 7.3: Code for diagonal DRLE units

xi = x_indx;
yi = y_indx;
for (i=0; i < size; i++){
ylyi] += *(values++) * x[xi];
i DELTA;
yi += DELTA;

X1 -

Listing 7.4: Code for anti-diagonal DRLE units
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Algorithm 7.1: Delta run-length encoding algorithm.

Input: An indices array containing column indices for a specific row
Input: A limit integer depicting the minimum size for DRLE units

deltas = deltaEncode (indices) // perform delta-encoding on indices
delta,je < deltas|0] // delta value of current run
fregue <+ 1 // frequency of current run
for i <+ 1to deltas.size() do
if deltas[i| == delta,;. then // the run continues
L freQTle < fre%‘le +1
else // the run stops
if freq,;e > limit then encode in DRLE units // run is large enough
else keep individual indices // run is small
deltaye < deltas]i
fre%“le +—1

functions for the substructures implemented are shown in Table 7.3. An example of applying the
diagonal transformation function is shown in Figure 7.2. As it is illustrated in the example, the
transformation function maps the coordinate pair of a matrix element to a new pair so that: the
first coordinate identifies the diagonal of the element and the second coordinate identifies the
location of the element in the diagonal. For example, element (3, 2) is mapped to (5, 2), which is
the second element of the fifth diagonal.

Substructure Transformation

Horizontal (', 5" = (4,7)

Vertical @', 4" = (J,9)

Diagonal (i',7") = (nrows + j — i, min(4, j))

Anti- g o ) (mrows +j — i, ), i< nrows
diagonal @.7) = {(j, i+ j — nrows), i > nrows

Table 7.3: The transformations used to convert the different substructures to horizontal, in order
to feed our detector.

Applying the transformation function, however, is not enough: coordinate pairs must be
sorted before entered into the detection algorithm. The most common metric for measuring the
computational complexity of a sorting algorithm is the number of comparisons performed and
for n elements at least O(nlogn) comparisons are required in the typical case [Knu73]. Thus,
the transformation-based approach is simple and elegant, but in the general case it requires more
expensive pre-processing than other methods (e.g., CSR-DU and CSR-VI).

A detailed example of the detection of a diagonal substructure is illustrated in Figure 7.3.
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(1,1) (1,2) (1,3) (1,4) 4,1) 3,1 (2,1) (1,1)
21 (2.2) (2.3) (2.4) | immrowsti | (5.1 (4.2) (3.2) (2,2)
(3’ 1) (37 2) (37 3) (3’ 4) J'=min(i,7) (6’ 1) (57 2) (47 3) (3’ 3)
(4,1) (4,2) (4,3) (4,4 (7,1) (6,2) (5,3) (4,4)

Figure 7.2: Transformation example for diagonal DRLE units.

Initially, the transformation function 7" is applied to the elements (@). Next, the transformed
coordinates are lexicographically sorted and passed to the detector (®). The detector groups the
diagonal elements together in a single DRLE unit. For each DRLE unit, the following information
is maintained: the first element of the run (5, 1), the current direction (DI AG), the delta value
(1), and the unit’s size (5). The last step is to apply the inverse transformation function 7! on
the first element of the unit (®). The final result is equivalent to the original data and can be used
to generate the corresponding matrix elements.

- (1,2) . . . .
(2,3) - . . o
SR A > (5,1) (5,2) (5:3) (5,:4) (5.5)
. i (5,6) T: HORIZ — DIAG
A
: DRLE detection 9
-
\J

T-!: DIAG — HORIZ
(1,2) - DRLE : (DIAG,$ = 1,size =5) - (5,1) - DRLE : (DIAG,$ =1, size = 5)

©

Figure 7.3: Diagonal DRLE detection example.

7.3.2 Substructure selection

Selecting a proper substructure subset for encoding the matrix is critical for SpMxV perfor-
mance. If we encode matrix data using all possibilities, we run the risk of including a large number
of substructures which makes the dispatch logic inefficient. For this reason, during the selection
procedure, we filter out substructures that cover less than 10% of the total matrix elements.

We solve the selection problem using a greedy algorithm shown in Algorithm 7.2. At each
iteration all possible transformations are applied on the matrix element’s coordinates. For each
transformation we preform DRLE detection and generate a score value that represents the suit-
ability of the transformation for the matrix data. The transformation with the largest score is
selected and appropriate substructure units are constructed. The algorithm is repeated for all re-
maining transformations until no more elements can be encoded. Remaining elements are placed
in delta units, i.e., CSR-DU units, stored in row-major order.

We base the rating (i.e., scoring) of different encodings on two metrics, the first being the
number of non-zero elements matched by the substructure. The second, less straightforward,
metric is the number of units. If, for example, two encodings match the same number of ele-
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Algorithm 7.2: Substructure selection algorithm.

Input: An array (elems) containing the elements of the matrix
Input: A set (x forms) of transformations

while True do
scoremar < 0

foreach x f in x forms do
elems < x f(elems)

sort(elems)
score < getScore(elems)

if score > scorep,q, then
L SCOT€mas — SCOTE

T frnaz < xf
| elems < xf(elems)

if scorepq: == 0 then
| break

encode elems using & frqx
| remove T fiqe from x forms

ments, we favor the encoding with the smaller number of units because it results in less overhead,
both in storage and computation (e.g., in SpMxV). Specifically, we score encodings using the
number of elements encoded minus the total number of units. The scoring value represents a
simplistic approach for calculating index size reduction by considering that the storage size of
each substructure is equal to the storage size of individual elements:

score = totaly,, — (units + total,,, — encoded,,,) = encoded,,, — units

A selection example is illustrated in Figure 7.4. The matrix in this example contains two
substructures: a diagonal and a vertical. Since the vertical substructure contains more elements
than the diagonal it is selected on the first iteration and its elements are replaced with a unit
positioned at (1, 2). On the second iteration a diagonal unit is created starting at (2, 3). Note that
an element, e.g., (1, 2), cannot be a member of two or more units.

7.3.3 Matrix encoding

Similarly to the CSR-DU format, we encode the matrix index data in a single byte-array called
ctl. Each unit starts with two bytes: usize and uflags. usize contains the number of unit ele-
ments, and uflags the unit’s type along with some bookkeeping information. From the 8 bits of
uflags, 6 are reserved for the encoding of the type, and 2 are used for a new row marker and a row
offset marker. If the row offset bit is set, the header is followed by a variable-length integer equal
to the number of empty rows. This is necessary, because the use of CSX units in directions other
than the horizontal may lead to empty rows. Finally, a unit offset field (ujmp) is appended to the
header. A unit, based on its type, may or may not include a main body: delta units contain the
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Figure 7.4: Substructure selection example

delta-encoded column indices, while DRLE units require only the header for element generation.
7.3.4 Multiplication routines

Conceptually the SpMxV operation on a CSX matrix is a two-level procedure. At the first
level all units are iterated, while at the second level the appropriate multiplications and additions
are performed. Note that for supporting a different operation, only the second level needs to
change. In our implementation the units are iterated in row-major order based on their starting
elements. We use a switch statement to transfer control from the first to the second level, based
on each unit’s type.

To accommodate for all possible cases, we employ a run-time code generation technique
[KEH91], where a specialized SpMxV routine is generated for each matrix based on the substruc-
ture types its encoding contains. We base our implementation on the LLVM [LLV,LA04] com-
piler infrastructure. A core component of LLVM is its intermediate representation (IR), which
resembles a RISC-like assembly, and it can be manipulated by optimization passes and used to
produce native code for a number of different ISAs. The code for the SpMxV operation is gen-
erated programmatically in LLVM’s IR. Subsequently, it is optimized and dynamically compiled
to native code. A persistent cache of generated versions can be used to reduce the overhead of
compilation and optimization.
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7.4 Restrictions and extensions

Opverall, CSX is a very flexible storage format. In our implementation, we detect substructures
using delta run-length encoding and two-dimensional transformations. This unified and sim-
ple detection algorithm allows support for different substructures, provided that they can be ex-
pressed as transformations. For example, we can extend our system to support two-dimensional
block structures by defining proper coordinate mappings. On the other hand, the detection algo-
rithm induces a significant run-time overhead in pre-processing, making our approach imprac-
tical for a number of real-world scenarios.

We argue, however, that it is possible to reduce the pre-processing overhead by altering the
detection algorithm. A first step towards this end is to perform detection on a limited window of
the matrix elements. If the size of the window is constant, sorting is applied to a constant number
of elements and does not affect overall complexity. The problem with this approach is that, by
limiting our view to a local scope of constant size, it is difficult for the detector to make sound
decisions on a global scale. For example, when acting locally the detector is unable to affirm
whether a particular substructure will encode a large portion of the total matrix elements.

7.5 Experimental evaluation

7.5.1 Experimental setup

We perform our evaluation on two systems: (a) a two-way quad-core system* (8 cores total)
based on Intel Harpertown processors (Figure 7.5a) and (b) a four-way 6-core system (24 cores
total) based on Intel Dunnington processors (Figure 7.5b). Table 7.4 provides a more detailed
description of the main characteristics of these systems.

Both systems run a 64-bit version of the Linux OS (kernel version 2.6). We used version 2.5
of the LLVM compiler infrastructure and llvm-gcc 4.2.1 (a modified version of gcc that acts as a
front-end for LLVM) as a static compiler. Threads are always scheduled to run on cores that are as
“close” as possible. For example, in the Harpertown processor, 2 threads are scheduled on cores
which share the L2 cache, while 4 threads are scheduled on the same physical package. For CSX,
we perform a separate substructure selection for each thread’s data and group together units with
asize larger or equal than 4. Our setup is otherwise similar to that of previous chapters: we use 32-
bit indices and 64-bits values, measure the performance of 128 consecutive SpMxV operations,
use the y output vector as the next iteration’s x vector, and evaluate our methods on a suite of 50
matrices (Table 4.3).

7.5.2 CSX encoding

Initially, we discuss the effectiveness of CSX in capturing substructures for the matrices of our
set. Figure 7.6 presents a breakdown of the resulting unit types from the substructure selection
phase for 1 thread. Delta units are designated with Dx, where x is the number of bits used for
the delta values, while DRLE encoded elements are designated with DIR (d), where DIR is the

*The same system used in the experimental evaluation of previous chapters (4, 5, 6).
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Figure 7.5: Cache hierarchy for the systems used for CSX performance evaluation

Harpertown Dunnington
Frequency (Ghz) 2.0 2.66
L1 (data/instruction) 32k/32k 32k/32k
L2 (unified) 6M (1/2 cores) 3M (1/2 cores)
L3 (unified) - 16M (1/chip)
Number of cores 2 x 4 =8cores | 4 x 6 =24 cores

Table 7.4: Overview of the systems used for CSX performance evaluation

direction and ¢ is the corresponding delta value. For instance, D16 is used for delta encoded
elements using 2-bytes delta values and Horizontal (2) is used for horizontal elements with a delta
value of 2.

A significant number of elements in the matrices of our set adhere to DRLE substructures.
The majority of the elements are encoded in horizontal, vertical or diagonal directions with § = 1.
There are some cases of matrix elements encoded in a anti-diagonal direction (e.g., Ga41As41H72)
or DRLE substructures with § # 1 (e.g., Chebyshev4), but they are limited. Hence, for the ma-
jority of the matrices in our set, we could reduce the overhead of pre-processing by limiting the
detectable substructures. For example, detection restrained in a single direction and a single delta
value (e.g., Diagonal with § = 1) can be implemented in O(nnz) steps, by keeping appropriate
information in buffers.

7.5.3 CSX SpMxV performance

Next, we discuss SpMxV performance for the CSX format. We consider three CSX variations:
(a) CSX without DRLE substructures (delta) (b) CSX with only horizontal DRLE substructures
(horiz) and (c) CSX with all possible DRLE substructures (full) . Note that the second and the
first variations are roughly equivalent to CSR-DU with and without sequential units, respectively.
The average speedups of the aforementioned CSX methods against serial CSR are illustrated in

T(:c0—|—2i,yo),i =0,1,...
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Figures 7.7a (Harpertown) and 7.7b (Dunnington). To avoid possible confusion, we note that the
mismatching of Harpertown CSR results with the results presented in Chapter 4 is an outcome
using different compilers.

The two systems exhibit similar behavior. On average, the delta and horiz CSX versions lead to
significant speedup increase. When all 8 cores are utilized in Harpertown, the average speedups
of delta and horiz versions are 1.99 and 2.17, improving upon CSR by 14% and 25%, respectively.
The corresponding Dunnington speedups for 24 threads are 10.38 and 11.43 — improving upon
CSR by roughly the same percentages as in the Harpertown case. The full version of CSX, however,
provides little improvement over the horiz version. This is because the majority of the matrices
in our experimental set are dominated by horizontal substructures. For these matrices, further
compression leads to diminishing returns or even performance degradation.

N o 127 o
227 [—=—CsR o 117 —®—CSR /
1| ~w--CSX (delta) o _ 10 | "¥CSX (delta) Y
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(a) Harpertown (b) Dunnington

Figure 7.7: Average CSR and CSX parallel speedup over serial CSR.

On the other hand, full CSX is able to significantly improve the performance for matrices that
are not dominated by horizontal structures. Detailed, per-matrix results are illustrated in Figures
7.8 and 7.9 that show the performance improvement of CSX methods over CSR, when all available
cores are utilized. These graphs show that several matrices exist, for which the full version of CSX
offers significant performance advantages over other CSX variants. Examples of such matrices
are stomach, torso3, apache2, G3_circuit, atmosmodj and Si87H76, which are earpdominated by
diagonal elements.
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Conclusions and future work

One of the major performance bottlenecks of multicore architectures is the main memory
subsystem because it is shared among cores. For the majority of applications this problem is
solved via a cache hierarchy which reduces accesses to the main memory. In this thesis, however,
we are concerned with applications that: (a) are unable to benefit from caching due to limited
temporal locality and (b) they are characterized by a low computation to memory access ratio.
These applications will typically perform poorly in a multithreaded environment, even if their
parallelization introduces minimal overhead.

Our work proposes the use of compression techniques to tackle the aforementioned problem
by sacrificing (scalable) CPU cycles to alleviate memory pressure. We direct our efforts towards
SpMxV, an important scientific kernel used in a variety of applications. We devise two sparse
matrix storage formats: CSR-DU and CSR-VI, which apply compression to the index and value
data of the matrix, respectively. More specifically, CSR-DU applies a coarse-grained delta en-
coding compression scheme for column indices, and optionally supports dense variable-length
one-dimensional blocks. CSR-VI, on the other hand, uses indirect indexing for the numerical
value data, and can be meaningfully applied to matrices that exhibit a large percentage of com-
mon values. Moreover, we also considered the combination of these two formats (CSR-DUVI),
that employs both the aforementioned techniques. Our experimental evaluation showed that all
methods demonstrate a noticeable performance improvement when all available cores are em-
ployed. Additionally, our proposed methods exhibited performance stability, since only a small
subset of our suite resulted in a significant slowdown compared to base-line performance (CSR).

Based on our previous work, we identify the need for a sparse matrix format that can be
adapted to different structural properties. Towards this direction, we present a generalization of
the CSR-DU format called CSX. CSX is able to utilize one-dimensional substructures across the
same row, column, diagonal or anti-diagonal using a delta run-length encoding scheme. CSXis a
very flexible storage format and can be further extended to incorporate other families of substruc-
tures if necessary. Since the majority of the matrices in our experimental set adhere to horizontal
patterns already supported by CSR-DU, further compression applied by CSX leads to diminishing
returns, i.e., small performance improvements. CSX, however, was able to significantly improve
the performance for a number of matrices with diagonal substructures.
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Next, we list possible future work directions.

o Framework for adaptable SpMxV: The optimal performance of the SpMxV kernel depends
on two factors: the nature of the sparse matrix and the execution architecture. Our work fo-
cuses on general matrices consisting of double-precision floating-point values, and shared
memory architectures that are unable to deliver the necessary memory bandwidth when all
cores are utilized. Although one could argue that these conditions are the most common,
they are not universal. In different conditions, the effect of the various optimizations can
change. For instance, index compression is expected to be less beneficial when the matrix
values are complex, while the converse is true for matrices with integer values.

Hence, an ideal SpMxV implementation should be able to adapt to different conditions
(e.g., matrix symmetry, data type of matrix values, number of threads used, characteristics
of the underlying micro-architecture) by being able to transform both the data and the
code. We argue that the CSX storage format is a good starting point for such an attempt,
due to its generality and flexibility.

o Support for other sparse operations: The SpMxV operation is a very important kernel for
sparse computations, yet it is not the only one. We believe that our work, and specifically
the CSX format, can be used to improve performance of other operations as well. CSX
substructures allow for a semantically richer representation of the matrix, which is an es-
sential requirement in realizing and exploiting optimization opportunities. A related, but
more difficult, problem is the creation of proper representations for operations and sub-
structures, such that their automatic composition is possible.

o Use of compression techniques in other application domains: As multicore processors be-
come the norm and core counts increase, more applications will experience reduced per-
formance due to limited memory bandwidth. Although the use of compression is not ap-
plicable to all cases, we believe that it can be used in applications domains other than sparse
computations. Graph and database domains consist good candidates for such an approach
— especially in read-only or read-mostly environments.
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Implementation Details

A.1 Blocked version of matrix multiplication

Listing A.1 shows an implementation of blocking matrix multiplication for NXN matrices.

for (bi = @; bi < N; bi += mstep)
i_max = MIN(N, bi+mstep);
for (bk = @; bk < N; bk += rstep)
k_max = MIN(N, bk+rstep);
for (bj = @; bj < N; bj += cstep)
j_max = MIN(N, bj+cstep);
for (i = bi ; i < i _max; i++)
for (k = bk; k < k_max; k++)
for ( j =bj ; j < j_max; j++)
CLil[3] += A[iI[k] * B[kI[3];

Listing A.1: Matrix multiplication kernel (blocked version)
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A.2 Memory throughput benchmark

To measure the memory throughput of a system, we developed a benchmark that allocates
and initializes large memory areas and subsequently performs read operations using streaming
instructions. The benchmark supports multiple threads and NUMA-aware allocation. The fol-
lowing function is the core function of our memory benchmark. It uses x86 Streaming SIMD
Extensions (SSE) instructions to load data from memory to registers. At each iteration, it per-

forms 16 independent 16-byte loads.

void bwm_read(void *data)
{
asm volatile (

”movdqa @(%[d]),
”movdga 16(%[d]),
”movdqa 32(%[d]),
”movdqa 48(%[d]),
”movdqa 64(%[d]),
”movdqa 80(%[d]),
”movdga 96(%[d]),
”movdqa 112(%[d]),
”movdqa 128(%[d]),
”movdqa 144(%[d]),
”movdqa 160(%[d]),
”movdqa 176(%[d]),
”movdqa 192(%[d]),
”movdqa 208(%[d]),
”movdqa 224(%[d]),
”movdqa 240(%[d]),

[d] ”r”(data)
)

%%xmm5
%%Xxmm6
%%xmm7
%%xmm8
%%xmm9
%%xmm10e
%%xmm11
%%xmm12
%%xmml3
%%xmm14
%%xmm15

\n\t”
\n\t”
\n\t”
\n\t”
\n\t”
\n\t”
\n\t”
\n\t”
\n\t”
\n\t”
\n\t”
\n\t”
\n\t”
\n\t”
\n\t”
\n\t”

Listing A.2: Memory throughput benchmark: streaming reads on x86 (64 bit)
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A.3 Memcomp benchmark

The memcomp benchmark creates synthetic instruction streams and measures their perfor-
mance. The streams are created based on three parameters: ¢, unroll and loops. Each stream
is essentially a loop that is executed loops times. At each iteration of this loop there are un-
roll instances of: a memory load followed by ¢ additions. The implementation is based on the
LLVM [LLV] compiler infrastructure. We consider an example where ¢ = 3 and unroll = 64;
Listings A.3 and A.4 show the resulting code for LLVM and x86 ISA, respectively.

%2 = load double* %val_ptr

%next_cnt = add i64 %cnt, 1

%val_add = add double %2, %1

%val_addl = add double %2, %val_add

%val_add2 = add double %2, %val_addl

%val_ptr3 = getelementptr double* %0, i64 %next_cnt
%3 = load double* %val_ptr3

%next_cnt4 = add i64 %next_cnt, 1

%val_add5 = add double %3, %val_add2

%val_add6 = add double %3, %val_add5

%val_add7 = add double %3, %val_addé

%val_ptr8 = getelementptr double* %0, i64 %next_cnt4
(...)

%65 = load double* %val ptr313

%next_cnt314 = add i64 %next_cnt309, 1

%val_add315 = add double %65, %val_add312
%val_add316 add double %65, %val_add315
%val_add317 = add double %65, %val_add316

Listing A.3: Memcomp benchmark example for c=3 and unroll =64 (LLVM)

movsd (%rdi,%rax,8), %xmml
addsd %xmml, %xmme

addsd %xmml, %xmmo

addsd %xmml, %xmmo

movsd 8(%rdi,%rax,8), %xmml
addsd %xmml, %xmmo

addsd %xmml, %xmme

addsd %xmml, %xmme

(..2)

movsd 504 (%rdi,%rax,8), %xmml
addsd %xmml, %xmmo

addsd %xmml, %xmmo

addsd %xmml, %xmme

Listing A.4: Memcomp benchmark example for c=3 and unroll =64 (x86 assembly)
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