
Memory and Network Bandwidth Aware Scheduling of
Multiprogrammed Workloads on Clusters of SMPs ∗

Evangelos Koukis and Nectarios Koziris
National Technical University of Athens

School of Electrical and Computer Engineering
Computing Systems Laboratory

{vkoukis, nkoziris}@cslab.ece.ntua.gr

Abstract

Symmetric Multiprocessors (SMPs), combined with
modern interconnection technologies are commonly used to
build cost-effective compute clusters. However, contention
among processors for access to shared resources, as is the
main memory bus and the NIC can limit their efficiency sig-
nificantly. In this paper, we first provide an experimental
demonstration of the effect of resource contention on the to-
tal execution time of applications. Then, we present the de-
sign and implementation of an informed gang-like schedul-
ing algorithm aimed at improving the throughput of mul-
tiprogrammed workloads on clusters of SMPs. Our algo-
rithm selects the processes to be coscheduled so as not to
saturate nor underutilize the memory bus or network link
bandwidth. Its input data are acquired dynamically using
hardware monitoring counters and a modified Myrinet NIC
firmware, without any modifications to existing application
binaries. Experimental evaluation shows throughput can
improve up to 40-48% compared to the standard Linux 2.6
O(1) scheduler.

Keywords: scheduling, SMP clusters, multiprogram-
ming, memory bandwidth, resource contention, perfor-
mance counters, Linux, Myrinet

1 Introduction

Symmetric Multiprocessors, or SMPs for short, have
emerged as a cost-effective solution for constructing scal-
able clustered systems, when interconnected over a low-
latency networking infrastructure. However, their symmet-
ric design, according to which most system resources are
shared equally between all processors in the system can

∗This research is supported by the Pythagoras II Project (EPEAEK II),
co-funded by the European Social Fund (75%) and National Resources
(25%).

have negative impact on their performance and impose sig-
nificant barriers to scalability, due to processor contention.
When SMP nodes are combined to form large compute clus-
ters, two resources for which there is major contention are
bandwidth to the shared main memory of each node, and
network I/O bandwidth on each node’s communication link.
The imbalance between the ever increasing speed of

CPUs vs. the relatively slow advances in memory tech-
nology has long been the focus of scientific research. As
the CPU speed of the fastest available microprocessors in-
creases exponentially, while the speed of memory devices is
growing at a slow rate of about 7% per year [14], the ratio
of CPU to memory performance or “Machine Balance” [12]
becomes a deciding factor in determining overall system
performance. The inability of memory to cope with cur-
rently available CPUs becomes even more apparent when
more than one processors contend for access to data in main
memory.
The limited memory bus bandwidth problem in SMPs

is aggravated when building clusters of SMPs. Cluster
nodes are usually interconnected over high performance in-
terconnection networks such as Myrinet [6], or Infiniband
[3]. To relieve the CPU from the communication burden,
their NICs feature embedded microprocessors and DMA
engines, which undertake almost all network protocol pro-
cessing leaving the CPU free to perform useful calcula-
tions. However, as interconnect technology advances and
the available link bandwidth increases rapidly, so does the
memory bus bandwidth consumption of the NIC relative to
the CPUs of the system, further adding to the problem and
adversely affecting the degree of computation to communi-
cation overlapping that can be achieved.
When executing multiprogrammed workloads on clus-

ters of SMPs, the effect of process skew on the efficiency
of the system must also be taken into account. Many paral-
lel applications comprise successive computation and com-
munication steps, with synchronization operations between

Proceedings of the 12th International Conference on Parallel and Distributed Systems (ICPADS'06)
0-7695-2612-8/06 $20.00 © 2006 IEEE

(e.g. barrier primitives). When only local OS scheduling
policies are applied, without regard to synchronization, it
is often the case that one of the processes of the applica-
tion may be delayed in reaching a synchronization point,
for example because it has been forced to leave the CPU.
This prevents all its peers from making progress, and in-
creases the overall execution time. To facilitate the efficient
execution of multiprogrammedworkloads, gang scheduling
techniques [7, 8, 9] have been proposed. Gang scheduling
is based on allocating concurrently all required CPUs to the
processes of a parallel application whenever it is scheduled
to run, thus minimizing the time wasted at synchronization
points due to process skew.
In this paper, we try to address the problem of limited

memory and network bandwidth by designing and imple-
menting a bandwidth aware, gang-like scheduling policy,
adapted to the execution of multiprogrammed workloads
on clusters of SMPs. Our policy selects the processes to
be coscheduled, aiming at minimizing the interference on
the shared memory bus and the NIC communication link
of each SMP. In previous work [10], we explored the ap-
plication of such techniques on a local scale, trying to al-
leviate the impact of contention on the shared memory bus
of a single SMP node. We now extend this approach to a
cluster-wide scale and apply it both to contention for access
to memory and to contention for access to communication
link bandwidth, on every SMP node.
Our goal is to monitor application demands for each of

the contented-for resources at run-time, and then use this
information to select jobs to be coscheduled, so that pro-
cesses executing concurrently in the same SMP neither sat-
urate not underutilize the shared memory bus and the node
NIC. The scheduler is designed so that no modifications to
existing application binary code is required. The required
monitoring data are acquired transparently to executing ap-
plication code, by means of the performance monitoring
counters provided by most modern microprocessors [21].
Moreover, custom modifications to the firmware executing
on the NICs are introduced, in order to allow estimation of
the memory bandwidth consumed by DMA engines on the
NIC, and to monitor the contention on the NIC’s send and
receive queues.
In the rest of this paper, we begin by presenting related

work in the area, then demonstrate the problem of memory
and network contention by measuring the execution slow-
down imposed on mixed benchmark workloads (Section 3).
Based on our observations, we propose a bandwidth aware
scheduling policy to alleviate the problem (Section 4). Sec-
tion 5 describes the performance monitoring framework we
designed, both at the CPU as well as at the NIC firmware
side and a proof-of-concept scheduler implementation. Fi-
nally we present an experimental evaluation of our schedul-
ing policy compared to the standard Linux scheduler (Sec-

tion 6) and our conclusions (Section 7).

2 Related work

Many research efforts aim at mitigating the effects of
memory contention on SMPs by using the cache hierar-
chy in memory conscious ways. On one hand, there are
techniques [1, 17, 18] aiming at better exploiting available
caches by employing sub-blocking and partitioning tech-
niques, in order to improve the locality of references and
minimize the cache miss rate. On the other hand, sched-
ulers in modern OSs incorporate CPU affinity constraints
[20, 19, 16], in order to avoid the increased memory load as
a recently migrated process rebuilds its state information in
a new processor’s private cache hierarchy.
The effect of limited memory bandwidth on process ex-

ecution in the context of soft- and hard- real time systems
has been investigated in [11] and in [5], where techniques
are presented to satisfy guaranteed memory bandwidth de-
mands and to throttle lower priority processes so that they
do not interfere with the execution of higher priority ones.
The impact of contention while accessing the shared mem-
ory bus is an aspect of this work, as well, however we seek
to increase system throughput in multiprogrammed clusters
of SMPs, rather than meet strict deadlines.
The work in [2] is similar to ours, describing a system

which uses source code hooks to track the memory band-
width usage of each application and coordinate their exe-
cution, on a single SMP machine. Our approach is based
on a monitoring framework which requires no applica-
tion source code changes, but instead relies on OS and
NIC firmware mechanisms in order to transparently mon-
itor memory bandwidth usage. Furthermore, we target
clusters of SMPs, taking into account the pressure on the
memory bus imposed by the NIC and monitoring con-
tention on the shared communication link while executing
communication-intensive applications.

3 Application slowdown due to memory and
network contention

In this section, we demonstrate the impact of memory
and network contention on overall system performance,
by quantifying the slowdown imposed on the execution of
computation-intensive workloads. We try to highlight sepa-
rately the effects of saturation on the shared memory bus
and the effects of contention on the cluster interconnect,
while at the same time ensuring that the processes being
executed do not share processor time or other system re-
sources, and only contend for access to main memory or to
the NIC.
Our set of benchmarks, used both to demonstrate the

Proceedings of the 12th International Conference on Parallel and Distributed Systems (ICPADS'06)
0-7695-2612-8/06 $20.00 © 2006 IEEE

problem of resource contention and to evaluate the effec-
tiveness of our scheduling policy, comprise the BT, CG, EP,
FT, IS, LU, MG, SP applications from the NAS Parallel
Benchmarks suite [4].We also developed two microbench-
marks, membench and myribench, which are designed
to induce varying degrees of memory and network traffic.
A brief description of the set of benchmarks is presented in
Fig. 1.

Name Description BW req.
BT Block Tridiagonal Solver 373MB/s
CG Conjugate Gradient 674MB/s
EP Random Number Generator 162MB/s
FT 3D Fast Fourier Transform 384MB/s
IS Integer Sort 475MB/s
LU LU Solver 491MB/s
MG 3D Multigrid 565MB/s
SP 3D Multi-partition algorithm 567MB/s

Figure 1. Description of benchmarks used

Our experimental platform is a four node SMP cluster.
Each node has two Pentium III@1266MHz processors on
a Supermicro P3TDE6 motherboard with the Serverworks
ServerSet III HC-SL chipset. Two PC133 SDRAM 512MB
DIMMs are installed for a total of 1GB RAM per node.
Each processor has 16KB L1 I cache, 16KB L1 D cache and
512KB unified L2 cache, with 32 bytes per line. For clus-
ter interconnection each node has a Myrinet M3F-PCIXD-2
NIC in a 64bit/66MHzPCI slot, connected to anM3-SW16-
8F line card. The NICs use the LanaiXP@225MHz embed-
ded processor with 2MB of SRAM.
The OS installed is Linux, kernel version 2.6.11. We

use the 2.6 branch of the kernel, mainly for its use of the
new enterprise-class O(1) scheduler, which has been com-
pletely rewritten since 2.4, with cache affinity and SMP
scalability in mind. Codes were compiled with the Intel
C Compiler v8.1, with maximum optimization for our plat-
form (-O3 -march=pentiumiii -axK -tpp7). To
estimate memory bandwidth consumption we used the
perfctr library formanipulation of the CPU performance
counters, as described in greater detail in Section 5.
Initially, we try to quantify the effects of memory bus

saturation. In order to isolate the impact of memory con-
tention from that of network contention, we confine our ex-
periments to only one of the SMP nodes. Also, this removes
the possibility of uncoordinated context switching between
the local OS schedulers executing on different SMP nodes,
which can influence the execution time of the workloads.
We ran six different sets of experiments (left part of

Fig. 2). First, for each benchmark we ran one instance of
it, in a single process on one of the two processors. In this
case, the process runs with negligible interference, since it
is essentially the only runnable one in the system. This run

allows us to produce a good estimate of the required mem-
ory bandwidth for each benchmark, as depicted in Fig. 1.
We also use the membench microbenchmark, along

with the application benchmarks. membench allocates a
block of B words, then accesses it sequentially multiple
times in an unrolled loop, with variable stride s. By ma-
nipulating s we can vary its cache hit ratio and the mem-
ory bus bandwidth it consumes. If L is the cache line size
in words, then two extremes are possible: If s = 1 then
the first reference to a cache line is a cache miss and all
L−1 remaining accesses are hits. In this setup (let us call it
membench-min), the microbenchmark exhibits excellent
locality of reference. If s = L then all accesses reference a
different cache line (membench-max). IfB is much larger
than the L2 cache, membench-max causes back-to-back
transfers of whole cache lines from main memory, and can
lead to saturation of the memory bus.
The first set of experiments shows that our benchmarks

have quite diverse demands for memory bus bandwidth. CG,
MG, and SP pose heavy load on the memory subsystem;
their memory access pattern involves irregular, sparse ar-
ray accesses, which exhibit low cache locality and create a
large number of requests to be serviced by main memory.
IS, FT and BT have medium memory bandwidth require-
ments, while EP is in the lower end, needing about 160MB/s
on our platform.
For the second set of experiments, we ran two instances

of every benchmark, on one process each, in parallel. There
is no processor sharing involved, however the applications
suffer a significant performance hit. The more memory in-
tensive benchmarks experience slowdowns in the range of
84-96%. The two instances of CG are effectively serial-
ized, because of interference on the shared memory bus.
We should also note that the degree of slowdown decreases
along with the memory bandwidth requirements of applica-
tions.
In the next set of experiments, we examine the behav-

ior of the benchmarks when the memory bus is already sat-
urated, by running an instance of membench-max along
with an instance of each benchmark. Again, CG, MG, SP
slow down considerably, this time however IS, BT and
FT are also affected significantly, running 80.4%, 42.9%,
57.4% slower respectively.
The next three sets of experiments put the Myrinet NIC

into play, demonstrating that the NIC of a modern cluster
interconnect can consume a major portion of the available
memory bandwidth and its interference must be taken into
account when studying the memory performance of clus-
ters of SMPs. The previous three sets were repeated, this
time however the firmware on the NIC was programmed
to perform read/write DMA accesses to RAM. There is no
change in the CPU time made available to the workload,
since the DMA engine is controlled by the firmware with-

Proceedings of the 12th International Conference on Parallel and Distributed Systems (ICPADS'06)
0-7695-2612-8/06 $20.00 © 2006 IEEE

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

SPMGLUISFTEPCGBT

R
el

at
iv

e
sl

ow
do

w
n

Benchmark

1 proc
2 proc

1 proc + mem
1 proc + net
2 proc + net

1 proc + mem + net

 0

 0.5

 1

 1.5

 2

SPMGLUISFTEPCGBT

R
el

at
iv

e
sl

ow
do

w
n

Benchmark

without myribench
with myribench

Figure 2. Application slowdown due to memory (left) and network contention (right)

out any CPU involvement. The results of the experiments
indicate that the memory bandwidth available to the CPUs
is decreased significantly. NIC accesses interfere with ac-
cess to main memory by the CPUs, even when only one
CPU is executing application code. In fact, the slowdown
for this case is comparable to the slowdown caused by both
CPUs executing application code simultaneously.
The previous experiments aimed at demonstrating the

impact of contention on the memory bus. The objective of
the next experiment is to quantify the contention for access
to NIC resources that takes place in a cluster of SMPs. This
time, we run an instance of each benchmark along with an
instance of myribench, which is designed to stress-test
the Myrinet interconnect by employing all-to-all commu-
nication between all hosts on the network. myribench
runs on four processes, one on each node. The results are
presented in the right part of Fig. 2. We note that network
contention can indeed slowdown the execution of most of
our benchmarks, in the case of CG even by a factor of 2.

4 Memory and network bandwidth aware
scheduling policy

The experimental results of the previous section clearly
demonstrate the impact of memory and network contention
on the achievable system throughput on a cluster of SMPs.
We should note however, that not all applications behave the
same in the presence of memory or network contention. In
fact, it is the the more memory-intensive applications (MG,
CG, SP) that suffer the greatest slowdown when the shared
memory bus is saturated. Similarly, applications perform-
ing fine-grained communication are more likely to suffer
slowdowns when network latencies increase and the avail-
able network bandwidth decreases due to contention on the
interconnect.
Motivated by these observations, we design a schedul-

ing policy aimed at maximizing system throughput when
executing computation-intensive multiprogrammed work-
loads on clusters of SMPs. Its main principle is that re-

source contention between processors in an SMP node can
be avoided by careful selection of processes to be executed.
A multiprogrammed workload will likely be diverse in the
resources demanded. Thus, we can schedule applications
with low resource demands simultaneously with applica-
tions with high resource demands. This reduces the amount
of serialization that takes place on the shared memory bus,
and during message exchange via the NIC. This way, a high
degree of parallelism is sustained.
Our algorithm accepts as input a set of applications to

be scheduled on a cluster of SMPs. Every application com-
prises a set of related processes. A process is the schedula-
ble entity, as seen from the point of view of the underlying
OS, i.e. the Linux kernel. In the generic case, each applica-
tion runs on processes across multiple nodes.
The algorithm is designed to execute locally on each

SMP node of the cluster. It assumes a real-time monitor-
ing framework, which allows local schedulers to sample
profiling data on currently executing processes, regarding
their use of memory bandwidth and network resources. This
framework is described in more detail in Section 5.
Since it is based on a gang scheduling policy, processors

across all nodes of the cluster are to be allocated to all re-
lated application threads simultaneously, ensuring that pro-
cess skew is minimized and the application makes progress
at the fastest possible rate. Thus, the local schedulers need
to communicate periodically, in order to make scheduling
decisions and perform synchronous context switches.
The algorithm accepts as input a set of n applications

to be scheduled. The size of the cluster is s SMP nodes,
each one of them containing P CPUs. Each application i,
where 0 ≤ i ≤ n, comprises pi processes on each SMP
node, with pi < P . Every job is characterized by a global
Job ID. Also, the schedulers keep track of the local Process
IDs associated with each application. This information is
organized in a doubly linked list and stored locally.
Time is divided in quanta of q sec. At the end of every

time quantum, the algorithm must decide on the set of ap-
plications to be scheduled for execution in the duration of
the next one. This is a two phase process. The first phase

Proceedings of the 12th International Conference on Parallel and Distributed Systems (ICPADS'06)
0-7695-2612-8/06 $20.00 © 2006 IEEE

runs on all SMP nodes in parallel and determines candidates
for execution among the applications. The second phase is
a reduction phase in which the selection of applications to
be scheduled is finalized.
The first, local phase of the algorithm is displayed as Al-

gorithm 1. Before every time quantum, a local set of candi-
dates to be scheduled is compiled, by allocating the P local
CPUs to applications. As it does so, each local scheduler
keeps track of the memory and network bandwidth that has
not been allocated so far, denoted by BWM

rem and BWN
rem

respectively. Initially, the available memory bandwidth is
M while the available network bandwidth is N . These fig-
ures are architecture-specific and can be derived from mi-
crobenchmarking (e.g. as in Section 3).
The procedure of compiling the local set of applications

is presented in Algorithm 2 and works as follows: Initially,
the set is empty. The first application on the list is always
added to it, and is allocated the number of processors it re-
quires, in order to prevent processor starvation and ensure
that every application will have a chance to execute. Fol-
lowing that, the algorithm continues selecting applications
and adding them to the set, until all processors have been
allocated. Applications are selected based on a heuristic
which estimates how well the resource demands of the ap-
plication fit the remaining memory and network bandwidth.
Since it is impossible to know the memory and network

bandwidth demands of the application beforehand, a pre-
diction is made based on the bandwidth consumption of its
processes during the w previous time quanta. The notation
BWC,−k

ij denotes the memory bandwidth consumed in the
k-th previous time quantum by the CPU on which the j-th
process of application i executed. Similarly, BWN,−k

ij is
used to denote the network bandwidth consumed, when the
NIC is transferring data on behalf of the same process. The
total memory bandwidth consumption of this process is thus

BWM,−k
ij = BWC,−k

ij + BWN,−k
ij

since all data to be exchanged over the interconnect must
be transferred from/to main memory using DMA. The run-
time parameter w defines a sliding window over which the
memory and network access rates of every process are av-
eraged. The choice of w could affect the efficiency of our
scheduler: It needs to be large enough to smooth out very
short spikes of activity, while at the same time being small
enough for our scheduler to adapt quickly to changes in the
behavior of processes.
The heuristic for selecting candidates for execution tries

to balance the load both on the shared memory bus and
the local NIC, by ensuring that they are neither saturated
nor underutilized. It divides the remaining memory and
network bandwidth among the yet un-allocated processors
(BWM

rem/Prem andBWN
rem/Prem respectively). The most

fitting application for execution is considered to be the

one whose resource consumption per process best matches
those two values. If we visualize the bandwidth require-
ments of applications in a 2D space, with the memory and
network bandwidth on the horizontal and the vertical axis
respectively, we can see that a good (inverse) fitness heuris-
tic can be the Euclidean distance between the ideal applica-
tion characteristics, at point(

BWM
rem

Prem
,
BWN

rem

Prem

)

and the estimated requirements of an application (Fig. 3).
The use of this metric favors scheduling together jobs

with high bandwidth demands along with lower resource
demanding jobs. Once demanding applications have been
selected, the ratios BWM

rem/Prem and BWN
rem/Prem be-

come very low, so jobs with low demands are more likely
to be selected next. The inverse also holds.
In the second phase of the scheduling algorithm (see Al-

gorithm 1), a reduction operation takes place. The result
of the local election of candidate applications on node l is
array Sl[], where element Sl [i] is 1 if application i has been
selected as a candidate for execution on this node and 0 oth-
erwise. In the reduction phase the array Stotal =

∑s
l=1 Sl

is computed and sorted in decreasing order. In the sequel,
local schedulers allocate processors to applications accord-
ing to their placement in it (i.e. their popularity), until all
processors have been allocated.The reduction phase is nec-
essary, in order to have a representative view on the resource
requirements of applications; it is possible that an appli-
cation might distribute the load unevenly between its pro-
cesses, so the profiling data could differ significantly among
SMP nodes.
The algorithm makes the assumption that applications

run across all cluster nodes. This was done to simplify the
analysis, by not introducing the concept of space sharing in
the discussion, and to keep the emphasis on the effects of re-
source contention. But there is also one more reason why it
makes sense to employ process topologies spread across the
cluster, rather than packing processes belonging to the same
parallel job as close together as possible: Running a parallel
job of 2N processes in a 2N×1 configuration of 2N nodes,
rather than on a N × 2 configuration of N nodes, means
there is double the aggregate memory bandwidth available.
As an example, on our experimental platform, a CG job runs
91% faster on the former configuration, and an SP job runs
67% faster.

5 Implementation details

5.1 Scheduler implementation

The scheduling policy described in the previous section
is well suited to an implementation in userspace. According

Proceedings of the 12th International Conference on Parallel and Distributed Systems (ICPADS'06)
0-7695-2612-8/06 $20.00 © 2006 IEEE

distance (i) =

√√√√√
⎛
⎝ 1

w

1
pi

w∑
k=1

pi∑
j=1

BWM,−k
ij − BWM

rem

Prem

⎞
⎠

2

+

⎛
⎝ 1

w

1
pi

w∑
k=1

pi∑
j=1

BWN,−k
ij − BWN

rem

Prem

⎞
⎠

2

Figure 3. The heuristic to determine application fitness

Algorithm 1: reschedule at alarm
begin1
/* 1st phase, local decision */2
foreach executing application do3
stop all of its processes4
move it at the end of the app. list5

end foreach6
invoke performance monitoring framework7
select set of candidates for execution in array Sl[]8
/* 2nd phase, reduction */9
sum up all local arrays to Stotal[]10
sort array Stotal[] in decreasing order11
perform a barrier to sync the context switch12
set a timer to expire after q sec13
while there are unallocated processors do14
resume applications based on position in15
sorted Stotal[]

end while16

end17

to this approach, scheduling decisions are made by a pro-
cess running with elevated privileges and are enforced us-
ing standard OS signaling mechanisms in order to suspend
and resume the applications being managed. The userspace
scheduler ensures that the number of runnable processes at
every instant does not exceed the number of available CPUs,
so that no context switching is done by the kernelspace OS
scheduler and there is no time-sharing involved.
Implementing our scheduling policy in userspace offers

several advantages: A userspace implementation is much
simpler and less error-prone than one in kernelspace. More-
over, a userspace process can be better informed of higher-
level semantic relationships between processes. While the
kernel views and schedules distinct processes, using node-
local data, a userlevel scheduler can cooperate with the job
submission system. Thus it can take into account for ex-
ample that certain processes form an MPI job and sched-
ule them accordingly. Supporting that kind of function-
ality in the kernel would require the extension of existing
user/kernel interfaces for process management and much
greater effort. The biggest drawback of a userlevel im-
plementation is the lack of a simple, efficient notification
mechanism of state changes in managed processes, e.g.
when a process leaves the CPU and blocks on I/O. In such
case the CPU would be left idle, while a kernel scheduler

Algorithm 2: select applications for next tq
begin1
foreach application i in list do2

Sl[i] ← 03

end foreach4
/* The first application always gets scheduled */5
Sl[0] ← 1; Prem ← P − p06

BWM
rem ← M − BWM

0 ; BWN
rem ← N − BWN

07
while Prem > 0 do8

bestd ← +∞; best ← −19
foreach application i in list do10

di ←11

distance
(
i, Prem, BWM

rem, BWN
rem

)
if pi ≤ Prem ∧ di < bestd do12

bestd ← di; best ← i13

end if14

end foreach15
Sl[best] ← 1; Prem ← Prem − pbest16

BWM
rem ← BWM

rem − BWM
best17

BWN
rem ← BWN

rem − BWN
best18

end while19

end20

would context switch to a different runnable process.
This section describes a proof-of-concept userspace im-

plementation of our policy, theMEMory and network Band-
width aware Userspace Scheduler (MemBUS). MemBUS is
designed to run locally, on every SMP node of the cluster,
in an mbus process. It runs as a privileged process, so as
to be able to create processes belonging to different users,
and listens for control requests at a local, UNIX domain
socket. A small control program (mbus ctl) can be used
to send requests for job creation and termination, through
this socket. The mbus process is responsible for creating
application processes to be managed, and attaching to them
using the ptrace system call. This way it can control
them completely, creating and sampling performance coun-
ters to monitor their resource consumption. The standard
SIGSTOP and SIGCONT signals are used to perform the
context switch.
We have also developed an interface between the

mpirun-based job submission system of MPICH-GM (the
port of MPICH to run over Myrinet) and MemBUS. We
modified the job initialization scripts, so that jobs are not

Proceedings of the 12th International Conference on Parallel and Distributed Systems (ICPADS'06)
0-7695-2612-8/06 $20.00 © 2006 IEEE

spawned using the standard rsh mechanism, but instead
mbus ctl is used. Each request submitted via mbus ctl
is tagged with a Job ID, so that MemBUS can treat all pro-
cesses belonging to the same job as a gang. The PID of
mpirun where the request originated is passed as the Job
ID, assuming that a frontend node is used for job submis-
sion to the cluster, so that the Job IDs of two different jobs
will never collide.
As described previously, the local schedulers need to

communicate, in order to perform the reduction operation
and context switch in a synchronous way. Currently, this is
done with a simple TCP/IP based mechanism. Initially, one
of the local schedulers is in charge of accepting TCP/IP con-
nections from all the others. At every quantum, it receives
the lists of preferred applications for execution (packed in
XDR representation, to allow for heterogeneity between
nodes in the future),and computes Stotal[]. Then it signals
the other schedulers, so that they context switch simulta-
neously. As long as the size of the cluster remains small,
performing the reduction operation centrally should not be
a bottleneck. However, to improve the scalability of our
scheduler we plan to rewrite this part of MemBUS using
MPI primitives. MPI can choose the optimal way of per-
forming the reduction and synchronization part, possibly
organizing the nodes in a tree to enhance parallelism.

5.2 Monitoring CPU memory bandwidth
consumption

Since CPUs in SMPs communicate with main memory
through a multi-level hierarchy of cache memories, estimat-
ing the memory bandwidth consumption of a CPU essen-
tially means being able to monitor the bus transactions used
to load and store cache lines to and from the highest level
cache, that is closest to main memory.
To monitor the memory behavior of applications with-

out needing any source code modifications we decided to
use the performance monitoring feature, as provided by
most modern microprocessors in the form of performance
monitoring counters. These are machine-specific registers
which can be assigned to monitor events in various func-
tional units of the processor, such as the number of floating-
point instructions executed, or the number of branch mis-
predictions. In our case, we are interested in monitoring the
Data Cache Unit, and more specifically the number of bus
transactions to transfer whole cache lines between the main
memory and the L2 cache (cache fill or writeback opera-
tions).
There are two obstacles for performance monitoring

counters to be used effectively by MemBUS. First, the in-
structions for performance counter manipulation are usually
privileged and can only be issued from kernelspace. Sec-
ond, they are a per CPU, not a per process resource. If

we are to count bus transactions and other events individ-
ually per process, i.e. only when that process is execut-
ing on a (random) CPU, the counters need to be virtualized,
similarly to the way each process has a private view of the
processor’s register set, although it runs in a timesharing
fashion and may migrate to other processors. Thus, the OS
needs to be extended, so that it sets up monitoring of a pro-
cess’s events before context switching into it, and samples
the performance monitoring counters when its time quan-
tum expires.
In our case, the virtual performance counter function-

ality was provided under Linux by the perfctr library
[15]. perfctr comprises a Linux kernel module and a
userspace library. The kernel module code runs in privi-
leged kernelspace and performs functions such as program-
ming the performance counters and sampling their values at
every context switch, while the userspace library communi-
cates with the kernel module via the system call layer and
exposes a portable interface to programmers, in order to set
up and monitor virtual performance counters.

5.3 Monitoring NIC bandwidth consump-
tion

To accurately determine memory bus bandwidth usage,
our scheduler needs to take into account the contention be-
tween CPUs and the NIC for access to data residing in main
memory. However, the OS-bypass, User Level Networking
characteristics of modern cluster interconnection architec-
tures make it difficult to intercept the communication pro-
cess and monitor the communication load in a way that is
transparent to the application. The greatest part of the com-
munication functionality now resides within the NIC and is
implemented in firmware executing on embeddedmicropro-
cessors onboard it. Since the OS is not in the critical path of
communication, we have to make modifications to the NIC
firmware and provide a method for MemBUS to access the
monitoring information.
Our testbed is based on Myrinet NICs and the GM

message passing API for communication between nodes.
Myrinet uses point-to-point 2+2Gbps fiber optic links, and
wormhole-routing crossbar switching. In contrast to con-
ventional networking technologies such as TCP/IP, it aims
at minimizing latency by offloading communication func-
tions to an embedded RISC microprocessor, called the
Lanai, thus removing the OS from the critical path.
GM [13] is the low-level message passing interface for

Myrinet, providing high bandwidth, low latency ordered
delivery of messages. It comprises firmware executing
on the Lanai, a Linux kernel module and a userspace li-
brary. GM allows a process to exchange messages di-
rectly from userspace, by mapping part of Lanai mem-
ory (a so called GM port) to its virtual address space.

Proceedings of the 12th International Conference on Parallel and Distributed Systems (ICPADS'06)
0-7695-2612-8/06 $20.00 © 2006 IEEE

This is a privileged operation that is done via a system
call to the GM kernel module, but afterwards the process
may directly manipulate the corresponding send and re-
ceive queues in order to request DMA transfers to and from
pinned userspace buffers. All protection and communica-
tion functions (memory range checking, message matching,
packet (re-)transmissions), are undertaken by the Lanai.
To monitor contention on the NIC, we modified the

firmware portion of GM-2, adding two 64-bit counters per
GM port, which reside in Lanai memory. The value of the
counters is updated by the firmware whenever a DMA trans-
action completes from or to host main memory, so that they
reflect the total amount of data transferred in each direc-
tion. The kernel module portion of GM-2 was also extended
to include a “read counters” request, which is used by the
scheduler in order to periodically sample the values of these
counters and copy them to userspace.

6 Experimental evaluation

To evaluate the efficiency of our scheduling policy, we
experimentally compare the system throughput achieved
both under our userspace implementation and when a mod-
ern SMP scheduler, the Linux 2.6 O(1) scheduler is used.
We measure application throughput for a series of work-
loads, combining applications with both low and high re-
source requirements. The experimental setup is the same as
described in Section 3.
To estimate the throughput sustained during workload

execution we made small modifications to the benchmarks,
so that they execute an infinite number of iterations and out-
put the current iteration count periodically to an in-memory
log file. The measurement script coordinating the execution
of the workloads makes sure that all applications receive a
signal to terminate (SIGALRM) when a predetermined time
period (wall clock time) expires, then analyzes the log files
in order to compute the attained throughput.
Our first set of experimental workloads consisted of two

instances of a resource-intensive benchmark, CG (compris-
ing four processes, one on each cluster node) along with two
instances of each application benchmark (in the same con-
figuration). By measuring the performance of each work-
load, we can observe the behavior of the Linux sched-
uler and MemBUS for various combinations of applications
with higher (CG, MG, SP) or lower (BT, EP) requirements.
We chose to include CG in all workloads of this set, in or-
der to see how MemBUS increases the throughput of an
application which is very sensitive to memory and network
contention, as it is combined in workloads with applications
of various requirements.
Initially, each workload was allowed to run for a prede-

termined duration of 10 minutes under Linux. This duration
is enough to amortize any initialization costs imposed at the

beginning of each benchmark’s execution, so that we can
be sure that the results reflect the benchmarks doing actual,
useful work. All processes were spawned directly under the
control of the Linux scheduler, using the mpirun script for
job submission with no modifications. The processes were
left to execute uncoordinated, without any intervention, in
order to observe their behavior without applying any opti-
mization to their execution. The results presented are av-
eraged over 10 runs of each workload, for 10 independent
10-minute periods.
For the second set of experiments, each workload was

executed under MemBUS, using the MemBUS-specific
mpirun script. All workloads were executed with the time
quantum of MemBUS set to q = 0.5s, which is about two
or three times the time quantum of the underlying Linux
scheduler (100-200ms). Higher values of q would make
MemBUS too insensitive to quickly changing application
behavior, while lower values would be meaningless, since
they would interfere with the decisions made by the Linux
scheduler and could increase the scheduling overhead con-
siderably. All results presented in this section use a value
of w = 2, to smooth out any short-lived spikes in resource
consumption.
Finally, each benchmark was executed on its own, in or-

der to determine its maximum throughput on our platform.
This value can be compared directly to the results of the ex-
perimental evaluation after being divided in half, since the
number of processes in each workload is double the number
of processors.
These initial comparisons showed that MemBUS outper-

formed the Linux scheduler by a very large margin; there
was even a five-fold increase in throughput for the CG-
EP workload. The reason for the poor performance under
Linux was that MPICH-GM, the MPICH implementation
over Myrinet, polls while waiting for message completion.
Thus, a process may waste CPU time waiting for synchro-
nization with peers which may not yet have been scheduled.
In order to isolate the improvement due to better manage-
ment of memory and network bandwidth from the improve-
ment due to the gang scheduling nature of our algorithm, all
runs under Linux were repeated using the blockingmode of
MPICH-GM. In this mode, a process relinquishes the CPU
whenever it needs to wait for message completion. This has
two distinct advantages for Linux: First, related processes
are coscheduled implicitly across the cluster, since mes-
sage arrivals cause the corresponding processes to be un-
blocked and scheduled on a CPU. second, the Linux sched-
uler, contrary to MemBUS, can compensate for periods dur-
ing which a process has to wait for message completion, by
blocking it and context switching to a different, runnable
process.
The results of this part of the experimental evaluation are

displayed in the first graph of Fig. 4. For every workload,

Proceedings of the 12th International Conference on Parallel and Distributed Systems (ICPADS'06)
0-7695-2612-8/06 $20.00 © 2006 IEEE

the average throughput of the two benchmark processes is
normalized relatively to the ideal throughput, and the same
is done for CG. The first three bars correspond to the bench-
mark application of the workload, and represent its through-
put under the Linux scheduler, MemBUS and in the ideal
case, respectively. The next three bars correspond to CG.
The results show that scheduling under MemBUS can

bring significant throughput improvements to the more
memory-intensive application of the workload, in our case
CG, since it suffers the most when the memory bus is sat-
urated. MemBUS pairs an instance of CG with an instance
of a less demanding application, for the majority of time
quanta, as is shown by execution logs. This reduces re-
source contention and leads to more balanced application
performance. The throughput increase of CG ranges from
from about 6% (for the CG-CG workload) to 44% (for the
CG-IS workload). The throughput increase of the two CG
instances compensates for the performance degradation of
the competing benchmark instances: Under MemBUS, they
are routinely co-scheduled against CG, while under Linux
they probably spend a percentage of the time executing
against each other.
We expect the performance improvement under

MemBUS to increase, as the workloads become more
diverse in terms of bandwidth requirements. So, for the
second part of the experimental evaluation, we introduce
the membench-min microbenchmark. Each workload
consists of two instances of membench-bin, along with
two instances of each benchmark. Linux does not take ad-
vantage of the excellent cache locality of membench-min,
nor of the fact that it does not perform any network I/O. On
the other hand, MemBUS almost eliminates memory and
network contention by coscheduling each of its instances
with a benchmark instance. As expected, the throughput of
the benchmark instances comes close to the ideal one. CG is
favored the most, with a 39.0% improvement, while BT and
SP perform 24.4% and 19.9% better respectively. How-
ever, in many cases, the throughput of membench-min
is higher under Linux, actually exceeding the “ideal” case,
i.e. membench-min processes get more than their fair
share: they perform no network I/O and are scheduled
during what would be idle periods, while the benchmark
processes block waiting for data to arrive over the network.
Finally, in order to observe the behavior of our schedul-

ing policy in the presence of network contention, the third
set of workloads includes two instances of myribench,
along with two instances of each application bench-
mark. MemBUS chooses to execute the two instances of
myribench at different time quanta, so as to avoid con-
tention on the NICs. The performance improvement for
myribench ranges from 4% in the case of running with
EP to 25%, in the case of running with MG. The bench-
marks run with reduced contention on the memory bus,

since myribench has rather low demands for memory
bandwidth, but with increased contention on the network.
All results presented in this section are averaged over

multiple runs. In fact, application throughput under the
Linux scheduler varied widely between consecutive execu-
tions of the same workload, while it remained almost con-
stant under MemBUS. We attribute this to the cache-affine
design of the Linux scheduler, which makes interprocessor
migrations of processes very rare. If two memory inten-
sive processes are affine to the same processor, they cannot
interfere with each other, since they do not run simultane-
ously. On the other hand, they are very likely to contend for
access to resources if they are affine to different processors.
Thus, system throughput under Linux depends significantly
on the initial allocation to processors, which is an unpre-
dictable, essentially random process.

7 Conclusions - Future work

Contention among processors for shared resources in
SMP systems can greatly limit their efficiency. Saturation
of the main memory bus and contention for access to the
interconnection link reduces the attainable degree of paral-
lelism and imposes large execution slowdowns on multipro-
grammed workloads running on SMP clusters.
Motivated by these observations, we introduced a per-

formance monitoring framework, which allows for realtime
monitoring of CPU and NIC bandwidth consumption, then
used it to implement a bandwidth aware scheduling policy.
Experimental comparison between our scheduler and the
Linux 2.6 scheduler showed a significant reduction in the
CPU time required by high bandwidth processes, leading to
significant increase in system throughput, as well as more
predictable execution times. We expect the performance
improvement to increase with the number of processors and
nodes in the system.
In the future, we will continue in two directions. We

plan to extend our algorithm so that it can be applied to
shared resources apart from the main memory bus and the
NIC of SMPs. The functional units and shared levels of
the cache hierarchy in the case of SMT processors are one
such example. Also, we plan to investigate moving part
of our scheduler implementation to kernelspace, so that it
can be extended to manage workloads featuring not only
computation-intensive but also I/O-intensive applications.

References

[1] D. Agarwal and D. Yeung. Exploiting Application-Level
Information to Reduce Memory Bandwidth Consumption.
In Proceedings of the 4th Workshop on Complexity-Effective
Design, held in conjunction with the 30th International Sym-
posium on Computer Architecture (ISCA-30), Jun 2003.

Proceedings of the 12th International Conference on Parallel and Distributed Systems (ICPADS'06)
0-7695-2612-8/06 $20.00 © 2006 IEEE

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

SPMGLUISFTEPCGBT

R
el

at
iv

e
Th

ro
ug

hp
ut

Benchmark

2 x CG + 2 x benchmark

Benchmark - Linux
Benchmark - MemBUS

Benchmark - Ideal
CG - Linux

CG - MemBUS
CG - Ideal

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

SPMGLUISFTEPCGBT
Benchmark

2 x Membench-min + 2 x benchmark

Benchmark - Linux
Benchmark - MemBUS

Benchmark - Ideal
Membench-min - Linux

Membench-min - MemBUS
Membench-min - Ideal

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

SPMGLUISFTEPCGBT
Benchmark

2 x Myribench + 2 x benchmark

Benchmark - Linux
Benchmark - MemBUS

Benchmark - Ideal
Myribench - Linux

Myribench - MemBUS
Myribench - Ideal

Figure 4. Comparison of application throughput achieved for various workloads under Linux and
MemBUS

[2] C. D. Antonopoulos, D. S. Nikolopoulos, and T. S. Pap-
atheodorou. Scheduling Algorithms with Bus Bandwidth
Considerations for SMPs. In Proceedings of the 2003 Inter-
national Conference on Parallel Processing (ICPP 2003),
page 547, Oct 2003.

[3] I. T. Association. InfiniBand Architecture Specification, Re-
lease 1.0, 2000. http://www.infinibandta.org/specs.

[4] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L.
Carter, D. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A.
Lasinski, R. S. Schreiber, H. D. Simon, V. Venkatakrish-
nan, and S. K. Weeratunga. The NAS Parallel Benchmarks.
The International Journal of Supercomputer Applications,
5(3):63–73, Fall 1991.

[5] F. Bellosa. Process Cruise Control: Throttling Memory Ac-
cess in a Soft Real-Time Environment. Technical Report
TR-I4-02-97, IMMD IV - Department of Computer Science,
University of Erlangen-Nürnberg, Jul 1997.

[6] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik,
C. L. Seitz, J. N. Seizovic, and W. Su. Myrinet: A Gigabit-
per-Second Local Area Network. IEEE Micro, 15(1):29–36,
Feb 1995.

[7] D. G. Feitelson and L. Rudolph. Gang Scheduling Perfor-
mance Benefits for Fine-Grain Synchronization. Journal
of Parallel and Distributed Computing, 16(4):306–318, Dec
1992.

[8] A. Hori, H. Tezuka, Y. Ishikawa, N. Soda, H. Konaka, and
M. Maeda. Implementation of Gang-Scheduling on Work-
station Cluster. In D. G. Feitelson and L. Rudolph, editors,
Job Scheduling Strategies for Parallel Processing, pages
126–139. Springer-Verlag, 1996.

[9] M. A. Jette. Performance Characteristics of Gang Schedul-
ing in Multiprogrammed Environments. In Proceedings of
the 1998 IEEE/ACM Supercomputing Conference on High
Performance Networking and Computing (SC98), San Jose,
California, Nov 1997.

[10] E. Koukis and N. Koziris. Memory Bandwidth Aware
Scheduling for SMP Cluster Nodes. In Proceedings of
the 13th Euromicro Conference on Parallel, Distributed
and Network-Based Processing (PDP’05), pages 187–196,
2005.

[11] J. Liedtke, M. Völp, and K. Elphinstone. Preliminary
Thoughts on Memory-Bus Scheduling. In Proceedings of

the 9th workshop on ACM SIGOPS European workshop,
pages 207–210. ACM Press, 2000.

[12] J. D. McCalpin. Memory Bandwidth and Machine Balance
in Current High Performance Computers. IEEE Technical
Committee on Computer Architecture (TCCA) Newsletter,
Dec 1995.

[13] Myricom. GM: A Message-Passing System for
Myrinet Networks, 2003. http://www.myri.com/scs/GM-
2/doc/html/.

[14] D. Patterson and J.Hennessy. Computer Architecture. A
Quantitative Approach, pages 373–504. Morgan Kaufmann
Pub., San Francisco, CA, 3rd edition, 2002.

[15] M. Pettersson. The Perfctr Linux Perfor-
mance Monitoring Counters Driver, 2004.
http://user.it.uu.se/ mikpe/linux/perfctr/.

[16] M. S. Squiillante and E. D. Lazowska. Using Processor-
Cache Affinity Information in Shared-Memory Multiproces-
sor Scheduling. IEEE Transactions on Parallel and Dis-
tributed Systems, 4(2):131–143, 1993.

[17] G. E. Suh, S. Devadas, and L. Rudolph. A New Mem-
ory Monitoring Scheme for Memory-Aware Scheduling and
Partitioning. In Proceedings of the Eighth International
Symposium on High-Performance Computer Architecture
(HPCA’02), pages 117–, 2002.

[18] G. E. Suh, L. Rudolph, and S. Devadas. Effects of Memory
Performance on Parallel Job Scheduling. Lecture Notes in
Computer Science, 2221:116–, 2001.

[19] J. Torrellas, A. Tucker, and A. Gupta. Evaluating the Per-
formance of Cache-Affinity Scheduling in Shared-Memory
Multiprocessors. Journal of Parallel and Distributed Com-
puting, 24(2):139–151, 1995.

[20] R. Vaswani and J. Zahorjan. The Implications of Cache
Affinity on Processor Scheduling for Multiprogrammed,
SharedMemory Multiprocessors. In Proceedings of the 13th
ACM Symposium on Operating Systems Principles (SOSP
’91), pages 26–40. ACM Press, 1991.

[21] M. Zagha, B. Larson, S. Turner, and M. Itzkowitz. Perfor-
mance Analysis using theMIPS R10000 Performance Coun-
ters. In Proceedings of the 1996 ACM/IEEE Supercomputing
Conference on High Performance Networking and Comput-
ing (SC96), page 16. ACM Press, Nov 1996.

Proceedings of the 12th International Conference on Parallel and Distributed Systems (ICPADS'06)
0-7695-2612-8/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

