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Abstract

Efficient sharing of block devices over an interconnection
network is an important step in deploying a shared-disk par-
allel filesystem on a cluster of SMPs. In this paper we present
gmbock, a client/server system for network sharing of stor-
age devices over Myrinet, which uses an optimized data path
in order to transfer data directly from the storage medium to
the NIC, bypassing the host CPU and main memory bus. Its
design enhances existing programming abstractions, combin-
ing the user level networking characteristics of Myrinet with
Linux’s virtual memory infrastructure, in order to construct
the data path in a way that is independent of the type of block
device used. Experimental evaluation of a prototype system
shows that remote I/O bandwidth can improve up to 36.5%,
compared to an RDMA-based implementation. Moreover, in-
terference on the main memory bus of the host is minimized,
leading to an up to 41% improvement in the execution time of
memory-intensive applications.

1 Introduction

Clusters built out of commodity components are becoming
more and more prevalent in the supercomputing sector as a
cost-effective solution for building high-performance, cost-
effective parallel platforms. Symmetric Multiprocessors, or
SMPs for short, are commonly used as building blocks for
scalable clustered systems, when interconnected over a high
bandwidth, low latency communications infrastructure, such
as Myrinet [1], SCI [4] or Infiniband.
To meet the I/O needs of modern HPC applications, a

distributed, cluster filesystem needs to be deployed, allow-
ing processes running on cluster nodes to access a common
filesystem namespace and perform I/O from and to shared
data concurrently. Today, there are various cluster filesystems
implementations which focus on high performance, i.e. high
aggregate I/O bandwidth, low I/O latency and high number of
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sustainable I/O operations per second, as multiple clients per-
form concurrent access to shared data. At the core of their de-
sign is a shared-disk approach, in which all participating clus-
ter nodes are assumed to have equal access to a shared stor-
age pool. The shared-disk approach is followed by filesys-
tems such as IBM’s General Parallel File System GPFS [9],
Oracle’s OCFS2, Red Hat’s Global File System (GFS) [10],
SGI’s Clustered XFS and Verita’s VxFS, which aim at pro-
viding a high performance parallel filesystem for enterprise
environments.
In such environments, the requirement that all nodes have

access to a shared storage pool is usually fulfilled by utilizing
a high-end Storage Area Network (SAN), traditionally based
on Fibre-Channel (as in Fig. 1(a)). An SAN is a network-
ing infrastructure providing high-speed connections between
multiple nodes and a number of hard disk enclosures. The
disks are treated by the nodes as Direct-attached Storage, i.e.
the protocols used are similar to those employed for accessing
locally attached disks, such as SCSI over FC.
However, this storage architecture entails maintaining two

separate networks, one for access to shared storage and a
distinct one for Inter-Process Communication (IPC) between
peer processes, e.g. those belonging to the same MPI job.
This increases the cost per node, since the SAN needs to scale
to a large number of nodes and each new member of the clus-
ter needs to be equipped with an appropriate interface to ac-
cess it (e.g. an FC Host Bus Adapter). Moreover, while the
number of nodes increases, the aggregate bandwidth to the
storage pool remains constant, since it is determined by the
number of physical links to the storage enclosures. Finally, to
eliminate single points of failure (SPOFs) on the path to the
shared storage pool, redundant links and storage controllers
need to be used, further increasing total installation costs.
To address these problems, a shared-disk filesystem is

more commonly deployed in such way that only a small frac-
tion of the cluster nodes is physically connected to the SAN
(“storage” nodes), exporting the shared disks for block-level
access by the remaining nodes, over the cluster interconnec-
tion network. In this approach (Fig. 1(b)), all nodes can ac-
cess the parallel filesystem by issuing block read and write
requests over the interconnect. The storage nodes receive the
requests, pass them to the storage subsystem and eventually
return the results of the operations back to the client node.
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Figure 1. Interconnection of cluster nodes
and storage devices

Taken to extreme, this design approach allows shared-disk
filesystems to be deployed over shared-nothing architectures,
by having each node contribute part or all of its locally avail-
able storage (e.g. a number of directly attached Serial ATA
or SCSI disks) to a virtual, shared, block-level storage pool
(Fig. 1(c)). This model has a number of distinct advantages:
first, aggregate bandwidth to storage increases as more nodes
are added to the system; since more I/O links to disks are
added with each node, the performance of the I/O subsystem
scales along with the computational capacity of the cluster.
Second, the total installation cost is drastically reduced, since
a dedicated SAN remains small, or is eliminated altogether,
allowing resources to be diverted to acquiring more cluster
nodes. These nodes have a dual role, both as compute and as
storage nodes.
The cornerstone of this design is the network disk sharing

layer, usually implemented in a client/server approach. It runs
as a server on the storage nodes, receiving requests and pass-
ing them transparently to a directly-attached storage medium.
It also runs as a client on cluster nodes, exposing a block de-
vice interface to the Operating System and the locally execut-
ing instance of the parallel filesystem (Fig. 3(a)). There are
various implementations of such systems, facilitating block-
level sharing of storage devices over the interconnect. GPFS
includes the NSD (Network Shared Disks) layer, which takes
care of forwarding block access requests to storage nodes over
TCP/IP. Traditionally, the Linux kernel has included the NBD

(Network Block Device) driver and Redhat’s GFS can also be
deployed over an improved version called GNBD.
However, all of these implementations are based on

TCP/IP. Thus, they treat all modern cluster interconnects uni-
formly, without any regard to their advanced communication
features, such as support for zero-copy message exchange us-
ing DMA. Employing a complex protocol stack residing in
the kernel results in very good code portability but imposes
significant protocol overhead; using TCP/IP-related system
calls results in frequent data copying between userspace
and kernelspace, increased CPU utilization and high latency.
Moreover, this means that less CPU time is made available
to the actual computational workload executing on top of the
cluster, as its I/O load increases.
On the other hand, cluster interconnects such as Myrinet

and Infiniband are able to remove the OS from the critical
path (OS bypass) by offloading communication protocol pro-
cessing to embedded microprocessors onboard the NIC and
employing DMA engines for direct message exchange from
and to userspace buffers. This leads to significant improve-
ments in bandwidth and latency and reduces host CPU utiliza-
tion dramatically. As explained in greater detail in the section
on related work, there are research efforts focusing on im-
plementing block device sharing over such interconnects and
exploiting their Remote DMA (RDMA) capabilities. How-
ever, the problem still remains that the data follow an unopti-
mized path. Whenever block data need to be exchanged with
a remote node they first need to be transferred from the stor-
age pool to main memory, then from main memory to the in-
terconnect NIC. These unnecessary data transfers impact the
computational capacity of a storage node significantly, by ag-
gravating contention on shared resources as is the shared bus
to main memory and the peripheral (e.g. PCI) bus. Even with
no processor sharing involved, compute-intensive workloads
may suffer significant slowdowns since the memory access
cost for each processor becomes significantly higher due to
contention with I/O on the shared path to memory.
In this paper, we present an efficient method for imple-

menting network shared block-level storage over processor
and DMA-enabled cluster interconnects, using Myrinet as a
case study. Our approach, called gmblock, is based on di-
rect transfers of block data from disk to network and vice-
versa and does not require any intermediate copies in RAM.
It builds on existing OS and user level networking abstrac-
tions, enhancing them to support the necessary functional-
ity, instead of relying on low-level architecture-specific code
changes. By employing OS abstractions, such as the Linux
VMmechanism and the Linux I/O subsystem to construct the
proposed data path, we maintain UNIX-like process seman-
tics (I/O system calls, process isolation and memory protec-
tion, enforcement of access rights, etc). Moreover, applica-
tion code remains portable across different architectures and
only minimal code changes are necessary. Thus, gmblock
can be a viable solution for implementing shared-disk parallel
filesystems on top of distributed storage, and can be integrated
in existing parallel I/O infrastructures as an efficient substrate
for network block device sharing. The proposed extensions
to the Linux VM mechanism and the GM message-passing



framework for Myrinet are generic enough to be useful for a
variety of other uses, providing an efficient framework for di-
rect data movement between I/O and communication devices,
abstracting away architecture- and device-specific details.
In the rest of this work, we begin with basic user level

networking concepts and their implementation on Myrinet
in order to gain some insight on the software and hardware
environments we are interested in, then present different ap-
proaches for designing network block devices and the evolu-
tion of gmblock’s design from them (Section 2). Section 3
concerns the specifics of gmblock’s implementation on top of
Linux and Myrinet. In Section 4 we evaluate gmblock’s per-
formance experimentally and compare it to that of existing
approaches, pinpointing the various bottlenecks, which deter-
mine overall system performance. Finally, Section 5 presents
previous research related to gmblock, while Section 6 sum-
marizes our conclusions and explores possible directions for
future work.

2 Design of gmblock’s nbd mechanism

2.1 User level networking

This section contains a short introduction to the inner
workings of Myrinet and its GM middleware, in order to gain
some insight on how an nbd1 system interacts with the in-
terconnection network during the transfer of block-level data.
The Myrinet software stack is displayed in Fig. 2(a). Myrinet
NICs reside on the peripheral bus of a cluster node (PCI/PCI-
X in the case of Myrinet-2000 used on our testbed). They
feature a RISC microprocessor, called the Lanai, which un-
dertakes almost all network protocol processing, 2-8MB of
SRAM for use by the Lanai and three different DMA en-
gines; one is responsible for DMA transfers of message data
between host memory and Lanai SRAM over the half-duplex
PCI/PCI-X bus, while the other two undertake transferring
data between Lanai SRAM and the full-duplex 2+2Gbps fiber
link. To provide user level networking facilities to applica-
tions, the GM message-passing system is used. GM com-
prises the firmware executing on the Lanai, an OS kernel
module and a userspace library. These three parts coordinate
in order to allow direct access to the NIC from userspace,
without the need to enter the kernel via system calls (OS by-
pass) while maintaing system integrity and ensuring process
isolation and memory protection.
In Fig. 2(c) the main components onboard a Myrinet M3F-

PCI64B-2 NIC are displayed, i.e. the DMA engines (one on
the PCIDMA chip and two on the packet interface), the Lanai
and its SRAM. In later versions of the NIC, such as the M3F-
PCIXD-2 used on our testbed, most of this functionality has
been integrated on a newer version of the Lanai, called the
LanaiX chip.
Zero-copy user level communication is accomplished by

mapping parts of Lanai SRAM (calledGM ports) into the VM

1nbd in all small letters will be used to denote generic client/server
implementations for network sharing of block devices. NBD in all capital
letters denotes the TCP/IP implementation in the Linux kernel.
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Figure 2. Implementation of user level net-
working by Myrinet/GM

address space of an application. This is a privileged operation,
which is done via system calls to the GM kernel module dur-
ing the application’s initialization phase. Each port contains
queues of send and receive descriptors, which the application
can access directly. The GM firmware polls these queues pe-
riodically, in order to detect any newly posted request. In case
of a send operation, it uses DMA in order to transfer the re-
quired data from host RAM to Lanai SRAM, then from Lanai
SRAM to the NIC of the receiver node, while the converse
happens during a receive.
Fig. 2(b) shows the steps that need to take place for a send

operation to complete successfully. The solid lines lines cor-
respond to operations involving either the host CPU (Pro-
grammable I/O – PIO) or the Lanai. The dashed lines cor-
respond to DMA operations. A gm send() operation entails
the following basic steps: (a) The application computes the
message to be sent in a pinned-down userspace buffer. The
buffer must have been pinned down beforehand, using GM-
specific calls to the GM kernel module, so that it resides in
DMA-able host memory and is never swapped out by the
kernel’s VM subsystem. Then, it uses the GM user library
to place a send token containing the virtual address of the
buffer in an open port’s send queue, in Lanai SRAM (b) The
GM firmware notices the token as it polls the queues period-
ically. To be able to construct the appropriate DMA chain
for the PCIDMA controller, it first needs to perform a virtual-
to-physical address translation, in order to know the physical
address where the data resides. This is the step that main-
tains process isolation and memory protection; even if the
application was in the position to know the physical address



for the buffer, it wouldn’t be trusted. A malicious applica-
tion would provide malformed physical addresses, in order to
read or write to arbitrary regions in host memory. Instead,
the Lanai performs the virtual-to-physical translation on its
own, based on platform-independent pagetables, which reside
in host memory and are managed by the GM kernel module.
Thus, an application must use GM-specific calls for memory
allocation, instead of malloc(), which invoke the GM kernel
module in order to register the region in GM’s pagetables.An
LRU cache of the pagetables is kept in Lanai SRAM (called
the “page hash entries” region) and is updated by the Lanai
via DMAwhenever necessary. After consulting the page hash
entries, the firmware programs the PCIDMA engine (c)Mes-
sage data are brought via DMA into structures called Myrinet
packet descriptors, kept in SRAM (d) The firmware programs
the Send DMA engine in order to send the data to the remote
NIC (e) An acknowledgement is received by the remote NIC.
The firmware uses the PCIDMA engine in order to place an
event of the appropriate type in the port’s event queue, which
resides in host memory. The application can keep polling the
queue in order to discover that the send operation has com-
pleted successfully. Alternatively, it can enter the kernel and
block in the GM module, waiting for an interrupt from the
NIC to be received.
It is important to note that sending – and receiving – a

message using GM is in fact a two-phase process:

Host-to-Lanai DMA Virtual-to-physical translation takes
place, the PCIDMA engine starts, message data are
copied from host RAM to Lanai SRAM

Lanai-to-wire DMA Message data are retrieved from
SRAM and sent to the remote NIC by the Send DMA
engine.

2.2 Evolution from previous nbd designs

The main principle behind an nbd client/server implemen-
tation is portrayed in fig. 3(a). The nbd client usually re-
sides in the OS kernel and exposes a block device interface
to the rest of the kernel, so that it may appear as an ordinary,
directly-attached storage device. The requests being received
from the kernel block device layer are encapsulated in net-
work messages and passed to a remote server. This server
is usually not necessary to run in privileged kernelspace. In-
stead, it executes as a userspace process, using standard I/O
calls to exchange data with the actual block device being
shared.
The pseudocode for a generic nbd server can be seen in

Fig. 4. For simplicity, we will refer to a remote block read
operation but the following discussion applies to write opera-
tions as well, if the steps involving disk I/O and network I/O
are reversed. There are four basic steps involved in servicing
a read block request: (a) The server receives the request over
the interconnect, unpacks it and determines its type – let’s as-
sume it’s a read request (b) A system call such as lseek() is
used to locate the relevant block(s) on the storage medium (c)
The data are transferred from the disk to a userspace buffer
(d) The data are transmitted to the node that requested them.
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initialize_interconnect();
fd = open_block_device();
reply = allocate_memory_buffer();
for (;;) {

cmd = recv_cmd_from_interconnect();
/* Suppose it’s a read */
lseek(fd, cmd->start, SEEK_SET);
read(fd, &reply->payload, cmd->len);
insert_packet_headers(&reply, cmd);
send_over_net(reply, reply->len);

}

Figure 4. Pseudocode for an nbd server

The overhead involved in these operations depends signif-
icantly on the type of interconnect and the semantics of its
API. To better understand the path followed by the data at the
server side, we can see the behavior of a TCP/IP-based server
at the logical layer, as presented in Fig. 5(a). Again, solid
lines denote PIO operations, dashed lines denote DMA opera-
tions. (a)As soon as a new request is received, e.g. in the form
of Ethernet frames, it is usually DMAed to kernel memory, by
the NIC (b) Depending on the quality of the TCP/IP imple-
mentation it may or may not be copied to other buffers, until it
is copied from the kernel to a buffer in userspace. The server
process, which presumably blocks in a read() system call on
a TCP/IP socket, is then woken up to process the request. It
processes the request by issuing an appropriate read() call to
a file descriptor acquired by having open()ed a block device.
In the generic case this is a cached read request; the process
enters the kernel, which (c) uses the block device driver to
setup a DMA transfer of block data from the disk(s) to the
page cache kept in kernel memory (d) Then, the data need to
be copied to the userspace buffer and the read() call returns
(e) Finally, the server process issues a write() call, which
copies the data back from the userspace buffer into kernel
memory. Then, again depending on the quality of the TCP/IP
impementation, a number of copies may be needed to split the
data in frames of appropriate size, which are (f) DMAed by
the NIC and transferred to the remote host.
In Fig. 5(b), we can see the actual path followed by data,

at the physical level. The labels correspond one-to-one with



those used in the previous description: (a, b) Initially, the read
request is DMAed by the NIC to host RAM, then copied to
the userspace buffer using PIO (c) The disk is programmed
to DMA the needed data to host RAM. The data cross the
peripheral bus and the memory bus (d) The data are copied
from the page cache to the userspace buffer by the CPU (e)
The data are copied back from the userspace buffer to the
kernel, in order to be sent over the network (f) The data cross
the memory bus and the peripheral bus once again, in order to
be sent over the network via DMA.
This data path is characterized by a large amount of re-

dundant data movement. The number of copies needed to
move data from the disk to the TCP/IP socket can be re-
duced by allowing the kernel more insight into the seman-
tics of the data transfer; one could map the block device onto
userspace memory, using mmap(), so that a write() to the
socket copies data directly from the page cache to the net-
work frame buffers, inside the kernel. However, depending
on the size of the process address space, not all of the block
device may be mappable. Thus, the overhead of remapping
different parts of the block device must be taken into account.
A different way to eliminate one memory copy is by by-

passing the page cache altogether. This can be accomplished
by use of the POSIX O DIRECT facility, which ensures that all
I/O with a file descriptor bypasses the page cache and that
data are copied directly into userspace buffers. The Linux
kernel supports O DIRECT transfers of data; the block layer
provides a generic O DIRECT implementation which takes care
of pinning down the relevant userspace buffers, determining
the physical addresses of the pages involved and finally en-
queuing block I/O requests to the block device driver which
refer to these pages directly instead of the page cache. Thus,
if the block device is DMA-capable, the data can be brought
into the buffers directly, eliminating one memory copy. Still,
they have to be copied back into the kernel when the TCP/IP
write() call is issued.
The main drawback of this data path is the large amount of

redundant data copying involved. We must bear in mind that
the actual goal is to transfer the requested block data from the
storage medium to the NIC (conversely in the case of a write
operation). In fact, the data being transferred are probably of
no interest to the local host. Despite that, even if only one
kernel copy takes place, they have to cross the peripheral bus
twice, and the memory bus at least four times (one per DMA
transfer and twice for the CPU-based memory copy). Thus,
twice the sustained network I/O bandwidth is needed on the
PCI bus and four times on the memory bus. If we take into
account that the storage nodes usually function as compute
nodes as well (path (g)), it is clear that filesystem I/O can
lead to reduction in the memory bandwidth made available
for computation on the CPU(s) of the system, causing mem-
ory contention and execution slowdowns. Moreover, a signif-
icant amount of CPU cycles is lost to copying block data and
processing network interrupts. Having the CPU perform data
copying may also have adverse cache effects: block data are
read into the cache even though they will not be reused, evict-
ing parts of the working set of the application code previously
executing on this CPU.

nbd userspace server

User

Kernel

Hardware

user (reply) buffer

TCP

IP

VFS

block layer

blockdev driver

page cache

Storage

netdev drv

NIC

a

a

c

d

d

c

e

f

f

b

POSIX I/O

e

c

(a) Data path at the logical level

CPU

Front-Side Bus

chipset

Memory Controller

PCI/PCI-X Bridge

I/O Controller

DIMM0

DIMM1

DIMM2

DIMM3

RAM

PCI/PCI-X

NIC

CPU

a

b

c

a

d e

f

g

f

(b) Data path at the physical level

Figure 5. TCP/IP based nbd server

The problem is alleviated, if a user level networking ap-
proach is used. When a cluster interconnect such as Myrinet
is available, the OS kernel can be bypassed during the net-
work I/O phase, by extending the nbd server application so
that GM is used instead of TCP/IP. In this case, some of the
redundant copying is eliminated, since the steps to service
a request are (Fig. 6(a)): (a) A request is received by the
Myrinet NIC and copied directly into a pinned-down request
buffer (b) The server application uses O DIRECT-based I/O so
that the storage device is programmed to place block data into
userspace buffers via DMA (c) The reponse is pushed to the
remote node using gm send(), as in Section 2.1. In this ap-
proach, most of the PIO-based data movement is eliminated.
The CPU is no longer involved in network processing, the
complex TCP/IP stack is removed from the critical path and
almost all CPU time is devoted to running the computational
workload. However, even when using GM for message pass-
ing, main memory is still on the critical path. At the physical
layer (Fig. 6(b)), for a read operation, block data are trans-
ferred from the storage devices to in-RAM buffers, then from
them to the Myrinet NIC. Thus, they traverse the peripheral
bus and the main memory bus twice; pressure on the periph-
eral and main memory buses remains, and remote I/O still
interferes with local computation (d), since they contend for
access to RAM.

2.3 An alternative data path with mem-
ory bypass

To solve the problem of redundant data movement at the
server side of an nbd system, we propose a shorter data path,
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Figure 6. GM-based nbd server

which does not involve main memory at all. To service a
remote I/O request, all that is really needed is to transfer
data from secondary storage to the network or vice-versa.
Data flow based on this alternative data path is presented in
Fig. 7(b): (a) A request is received by the Myrinet NIC (b)
The nbd server process services the request by arranging for
block data to be transferred directly from the storage device to
the Myrinet NIC (c) The data is transmitted to the node that
initiated the operation. Implementing this path would solve
most of the problems described above:

• The critical path is the shortest possible. Data go directly
from disk to NIC or vice-versa

• The full capacity of the peripheral bus can be used, since
data only traverse it once

• There is no staging in buffers kept in RAM, thus no
memory bandwidth is consumed by I/O and code ex-
ecuting on local CPUs does not incur the overhead of
memory contention

The inclusion of RAM buffers in all previous data paths
is a necessity arising from the semantics of the mechanisms
used to enable the transfer – GM and Linux kernel drivers
– rather than from the intrinsic properties of remote I/O op-
erations; GM programs the DMA engines on the Myrinet
NIC to exchange data between the Lanai SRAM and RAM
buffers, while the kernel programs storage devices to move
data from/to page cache or userspace buffers kept in main
memory. Thus, to support the proposed data path, we need to
extend these mechanisms so that direct disk-to-NIC transfers
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are supported. At the same time, the architecture-dependent
details of setting up such transfers must be hidden behind ex-
isting programming abstractions, i.e. GM user level network-
ing primitives and the Linux I/O system call interface. In
this approach, only minimal changes are required in the nbd
server source code to support the enhanced functionality.
Let’s assume a GM-based nbd server, similar to that

of Fig. 4. In the case of GM, the server would
have used gm open() to initialize the interconnect, and
gm dma malloc() to allocate space for the message buffer.
Variable reply contains the virtual address of this buffer, ded-
icated to holding the reply of a remote read operation, before
it is transferred over Myrinet/GM. If this memory space was
not allocated in RAM, but could be made to reside in Lanai
SRAM instead, then the read() system call could be used un-
altered, to express the desired semantics; It would still mean
“I need certain blocks to be copied to memory pointed to by
reply”, this time however referring to a buffer in SRAM,
mapped onto the process’s VM space at location reply.
However, if standard, buffered I/O was used, using this call

would first bring the data into the kernel’s page cache, then a
CPU-based memcpy() would be used to copy the data from
the cached page to the mapped SRAM buffer. This would
still invoke PIO; The whole of Lanai SRAM is exposed as a
large memory-mapped I/O resource on the PCI physical ad-
dress space. Thus, every reference by the CPU to the virtual
address space pointed to by reply during the memcpy() oper-
ation, would lead to I/O transactions over the peripheral bus.
The situation would be radically different, if POSIX O DIRECT
access to the open file descriptor for the block device was
used instead. In this case, the kernel would bypass the page



cache. Its direct I/O subsystem would translate the virtual ad-
dress of the buffer to a physical address in the Myrinet NIC’s
memory-mapped I/O space and use this address to submit a
block I/O request to the appropriate in-kernel driver. In the
case of a DMA-capable storage device, the ensuing DMA
transaction would have the DMA engine copying data directly
to the Myrinet NIC, bypassing the CPU and main memory
altogether. To finish servicing the request, the second half
of a GM Send operation is needed: The host-to-Lanai DMA
phase is omitted and a Lanai-to-wire DMA operation is per-
formed to send the data off the SRAM buffer. It is important
to note that almost no source code changes are needed in the
nbd server’s source code to support this enhanced data path.
The server process still issues read() and gm send() calls,
unaware of the underlying transfer mechanism. The desired
semantics emerge from the way the Linux block driver layer,
the kernel’s VM subsystem and GM’s user level networking
capabilities are combined to construct the data path.

2.4 Discussion

An analysis of the proposed data path at the logical layer
can be seen in Fig. 7(a). There are almost no gmblock-specific
changes, compared to a GM-based nbd implementation. To
achieve this, we re-use existing programming abstractions,
as provided by GM and the Linux kernel. By building on
O DIRECT based access to storage, our approach is essentially
disk-type agnostic. Since the CPU is involved implicitly in
the setup phase of the transfer, the server is not limited to
sharing raw block device blocks. Instead, it could share block
data in structured form, e.g. from a file in a standard ext2
filesystem. Or, it could be used over a software RAID infras-
tructure, combining multiple disks in a RAID0 configuration.
Another point to take into account is ensuring coherence

with the kernel’s page cache. Since blocks move directly from
NIC to storage and vice versa, a way is needed to ensure that
local processes do not perform I/O on stale data that are in the
kernel’s page cache and have not been invalidated. We avoid
this problem by keeping the kernel in the processing loop,
but not in the data path. Its direct I/O implementation will
take care of invalidating affected blocks in the page cache, if
an O DIRECT write takes place, and will flush dirty buffers to
disk before an O DIRECT read.
The proposed nbd system aims at minimizing the interfer-

ence of remote I/O with local computation when providing
a direct-attached storage abstraction to a parallel filesystem
stacked on top of it, as in Fig. 3(b). In this context, nodes are
assumed to interact at a much higher level, in order to coor-
dinate concurrent accesses to the virtual shared block device
and implement a distributed caching and invalidation mech-
anism. Thus, whenever a request finally reaches the block
device layer, it has already passed through the filesystem
caching layer and needs to be serviced in the least obtrusive
way possible; the data can be assumed to be of no real impor-
tance to the server node and the locally executing processes,
so it makes no sense to store them in the server-side page
cache, or to have them cross the memory bus.

3 Implementation details

3.1 GM support for buffers in Lanai
SRAM

The GMmiddleware needs to be enhanced, as to allow the
allocation, mapping and manipulation of buffers residing in
Lanai SRAM by userspace applications. At the same time, it
is important to preserve GM semantics and UNIX security
semantics regarding process isolation and memory protec-
tion, as is is done for message passing from and to userspace
buffers in host RAM.
The described changes were tested on GM-2.0.22 and

GM-2.0.26, running on an Intel EM64T system and an Intel
i386 system respectively, under Linux kernel v2.6.16. How-
ever, the changes affect the platform-independent part of GM,
so they should be usable on every architecture/OS combina-
tion that GM has been ported to.
The functionality that needs to be supported, along with

the relevant parts of GM is:

• Allocation of buffers in Lanai SRAM (GM firmware)
• Mapping of buffers onto the VM of a process in
userspace (GM library, GM kernel module)

• Sending and receiving messages using gm send() and
gm provide receive buffer() from/to Lanai SRAM
(GM library, GM firmware)

For the first part, the firmware initialization procedure was
modified, so that a large, page-aligned buffer is allocated for
gmblock’s use, off the memory used for dynamic allocation
by the firmware. Our testbed uses Myrinet NICs with 2MB
of SRAM, out of which we were able to allocate at most
1024KB for gmblock’s use and still have the firmware fit in
the available space and execute correctly.
The second part involved changes in the GM library, which

tries to map the shared memory buffer. The GM kernel mod-
ule verifies that the request does not compromise system se-
curity, then performs the needed mapping. The Lanai SRAM
buffer is shared among processes, but different policies may
be easily implemented, by changing the relevant code in the
GM kernel module.
Finally, to complete the integration of the SRAM buffer

in the VM infrastructure and allow it to be used transparently
for GM messaging, we enhance the GM library so that the
requirement for all message exchange to be done from/to in-
RAM buffers is removed. At the userspace side the library
detects that a GM operation refers to Lanai SRAM, and marks
it appropriately in the token passed to the Lanai. There, it is
treated specially by the firmware, which skips the Host-to-
Lanai DMA part, constructs the needed Myrinet packets and
only performs the Lanai-to-wire DMA operation.

3.2 Linux VM support for direct I/O with
PCI memory-mapped ranges

To implement gmblock’s enhanced data path, the Linux
VM mechanism must be extended so that PCI memory-



mapped I/O regions can take part in direct I/O operations.
So far, the GM buffer in Lanai SRAM has been mapped to
a process’s virtual address space and is accessible using PIO.
This mapping translates to physical addresses belonging to
the Myrinet NIC’s PCI memory-mapped I/O (MMIO) region.
The MMIO range lies just below the 4GB mark of the physi-
cal address space in the case of the Intel i386 and AMD x86-
64 platforms.
To allow the kernel to use the relevant physical ad-

dress space as main memory transparently, we extend the
architecture-specific part of the kernel related to memory ini-
tialization so that the kernel builds page management struc-
tures (pageframes) for the full 4GB physical address range
and not just for the amount of available RAM. The relevant
struct page structures are incorporated in a Linux memory
zone, called ZONE PCI and are marked as reserved, so that they
are never considered for allocation to processes by the ker-
nel’s memory allocator.
With these modifications in place, PCI MMIO ranges are

managable by the linux VM as host RAM. All complexity is
hidden behind the page frame abstraction, in the architecture-
dependent parts of the kernel; even the direct I/O layer does
not need to know about the special nature of these pages.

4 Experimental evaluation

To quantify the performance benefits of gmblock’s op-
timised data path (gm-myri), we compare it experimen-
tally to two implementations. One is Red Hat’s GNBD
(tcpip-gnbd), the reworked version of NBDwhich accompa-
nies GFS, the other is gmblock itself, running over GM with-
out the proposed optimization, thus using a data path which
crosses main memory (gm-mem).
Our experimental platform consists of two SMP nodes.

One functions as the client, the other as the server. Each
node has two Pentium III@1266MHz processors (16KB L1
I cache, 16KB L1 D cache and 512KB unified L2 cache, with
32 bytes per line) on a Supermicro P3TDE6 motherboard.
Two PC133 SDRAM 512MB DIMMs are installed for a to-
tal of 1GB RAM per node. The motherboard is based on the
Serverworks ServerSet III HC-SL chipset, which includes the
Broadcom CIOB20 PCI bridge to connect the Northbridge to
two different PCI segments. One is 64bit/66MHz/3.3V with
two slots, the other is 64bit/33MHz/5V with five slots. A
jumper on the motherboard can be closed to have the two
66MHz slots clocked at 33MHz.
The storage medium to be shared over Myrinet is pro-

vided by a 3Ware 9000S-8 SATA RAID controller, which
has 8 SATA ports on a 64bit/66MHz PCI adapter. We
built a hardware RAID0 array out of 8 Western Digital
WD2500JS 250GB SATA II disks, which is exported as a
single drive to the host OS. Array blocks are distributed
evenly among the disks with a chunk size of 64KB. The
nodes are connected back-to-back with two Myrinet M3F-
PCIXD-2 NICs, each in a 64bit/66MHz PCI slot. The NICs
use the LanaiXP@225MHz processor with 2MB of SRAM.
Linux kernel 2.6.16.5, GM-2.0.26 and 3Ware driver version
2.26.02.007 are used.

Initially, we measure the maximum read bandwidth pro-
vided by the 3Ware controller, locally. To this end,
gmblock srv, gmblock’s server component, is used in test
mode, performing back-to-back requests of fixed size for con-
secutive blocks in O DIRECT mode. The data are transferred
either to in-RAM buffers (for gm-mem) or to Lanai SRAM
buffers (for gm-myri). Our initial hardware setup involved
two Myrinet NICs on the 66MHz slots and the 3Ware con-
troller on a 64bit/33MHz slot. This test revealed that RAID-
to-RAM transferres outperformed RAID-to-NIC transfers by
a very large margin (maximum ∼380MB/s vs. ∼80MB/s).
With trial and error, we found the problem to be with the
CIOB20 bridge and the fact that the adapters were in differ-
ent PCI segments. When we replaced one of the NICs with
the 3Ware controller, removing the PCI bridge from the path,
PCI bursts from the RAID controller to the NIC became pos-
sible and the RAID-to-NIC bandwidth reached the expected
levels. The results are displayed in Fig. 8(a), as local-mem
and local-myri, for request sizes 1, 2, . . . , 1024KB. The
bandwidth increases singificantly for request sizes > 64KB,
since this is the chunk size of the RAID array, while a 512KB
request can be processed in parallel by all 8 disks.
The first test (Fig. 8(a)) measures network bandwidth

for all three implementations, for various request sizes.
Since only one client is used, to achieve good utilization of
Myrinet’s 250MB/s link it is important to pipeline requests
correctly. We tested with one, two and four outstanding re-
quests for gmblock, both for gm-mem and for gm-myri. We
are interested in bottlecks on the CPU, the RAID controller
and the PCI. In general, GNBD performs poorly and cannot
exceed 68MB/s on our platform. For gm-myri and gm-mem,
if only one request is in flight at each time, the system is
dominated by latency and the achievable bandwidth is rather
low. However, for two and four outstanding requests, the ef-
fects of limited PCI bandwidth start to appear. Since the data
cross the PCI bus twice for gm-mem, its maximum bandwidth
is 1

1
337 + 1

397
= 182MB/s. Indeed, for request sizes over

256KB for gm-mem-4, or 512KB for gm-mem-2 it does not ex-
ceed 177MB/s. On the other hand, gm-myri-4 utilizes the full
RAID controller bandwidth for 256KB requests (194.6MB/s,
14% better than gm-mem), while gm-myri-2 exceeds 200MB/s
for 512KB requests (13% better). Since gw-mem has already
saturated the PCI bus, the improvement would be even more
visible for gm-myri-4 if larger request sizes could be used,
since the RAID bandwidth cap would be higher for 512KB
requests. Unfortunately, the available memory for SRAM
buffers (1024KB) only sufficed for 1 × 1024KB request, or
2 × 512KB outstanding requests or 4 × 256KB outstand-
ing requests. Alternatively, we could have used two Myrinet
NICs, so that double the amount of SRAM would be avail-
able, but this was not possible on our testbed due to the lim-
ited number of PCI slots. In any case, gm-myri-4 is only
limited by the available RAID bandwidth for a given request
size and achieves good request pipelining even with only one
client.
It is also interesting to see the effect of remote I/O on

the locally executing processes on the server. On one hand,
TCP/IP processing for GNBD consumes a large fraction of



CPU power and a large percentage of memory bandwidth
for intermediate data copying. While gm-mem removes the
CPU from the critical path, it still consumes two times the
I/O bandwidth on the memory bus. If the storage node is also
used as a compute node, memory contention leads to signifi-
cant execution slowdowns.
For the second set of experiments, we run tcpip-gnbd,

gm-mem-4 and gm-myri-4 along with a compute-intensive
benchmark, on only one of the CPUs. The benchmark is a
process of the bzip2 compression utility, which performs in-
dexed array accesses on a large working space (∼8MB, much
larger than the L2 cache) and is thus sensitive to changes in
the available memory bandwidth, as we have shown in previ-
ous work [6]. There is no processor sharing involved; the nbd
server can always run on the second, otherwise idle, CPU of
the system. In Fig. 8(b) we show the normalized execution
time of bzip2 along with the normalized I/O bandwidth of
each nbd implementation, relative to executing on their own.
In the worst case, bzip2 slows down by as much as 70%,
when gm-mem is used with 512KB requests (a 41% improve-
ment for gm-myri). On the other hand, the benchmark runs
with negligible interference when gm-myri is used, since the
memory bus is bypassed completely and its execution time
remains almost constant.
Finally, we repeated the previous experiments for a PCI

64bit/33MHz bus, by clocking the two 66MHz slots at
33MHz. In this case (Fig. 9), again gm-mem’s performance
is bound at the expected point, the limit of the PCI bandwith,
while gm-myri performs 36.5% better, sustaining 142MB/s
vs. 104MB/s. The effects of interference on the shared mem-
ory bus are less pronounced, as expected, since the theoretical
peak bandwidth of PCI is now half, thus a smaller portion of
the available memory bandwidth.

5 Related work

The proposed framework for network block I/O has
evolved from previous design approaches, as has been de-
scribed in Section 2. Thus, the work both on TCP/IP-based
nbd solutions, such as NBD, GNBD and NSD as well as on
RDMA-based implementations is relevant to gmblock.
TCP/IP-based approaches are well-tested and highly

portable on top of different interconnection technologies, as
they rely on – almost ubiquitous – TCP/IP support. On the
other hand, they exhibit poor performance, need multiple
copies per block being transferred, and thus lead to high CPU
utilization due to I/O load. Moreover, they cannot explot the
advanced characteristics of modern cluster interconnects, e.g.
RDMA, since there is no easy way to map such functions to
the programming semantics of TCP/IP, thus achieving low I/O
bandwidth and having high latency.
RDMA-based implementations [8, 5, 7] relieve the CPU

from network protocol processing, by using the DMA en-
gines and embedded microprocessors on NICs. By removing
the TCP/IP stack from the critical path, it is possible to mini-
mize the number of data copies required. However, they still
feature an unoptimized data path, by using intermediate data
buffers held in main memory and having block data cross the

peripheral bus twice per request. This increases contention
for access to main memory and leads to I/O operations inter-
fering with memory accesses by the CPUs, leading to reduced
performance for memory-intensive parallel applications.
The work on Off-Processor I/O with Myrinet (OPIOM) [3]

is very similar in spirit with gmblock and has similar goals.
At the server side, OPIOM performs direct disk-to-Myrinet
transfers, bypassing the memory bus and the CPU. However,
to achieve this OPIOM makes extensive modifications to the
SCSI stack inside the Linux kernel, in order to intercept block
read requests so that the data end up not in RAM but in Lanai
memory. This has a number of significant drawbacks: First,
it is SCSI-specific and can only be used with a single SCSI
disk. Second, there is no provision for coherence with the
page cache, thus no remote write support is possible. Even
so, it is unclear what would happen if a remote node requested
data recently changed by a local process, still kept in the page
cache.
A different approach for bringing storage media closer to

the cluster interconnect is READ2 [2]. In READ2, the whole
of the storage controller driver resides on the Lanai processor
itself, rather than in the Linux kernel. Whenever a request ar-
rives from the network, it is processed by the Lanai, which is
responsible for driving the storage hardware directly, thus by-
passing the host CPU. However, removing the host CPU (and
thus the Linux kernel executing on top of it) from the process-
ing loop completely, limits the applicability of this approach
to real-world scenarios for a number of reasons. First, for
each different block device, its driver needs to be rewritten to
run on the limited resources of the Myrinet NIC, which pro-
vides none of the hardware abstraction layers of the Linux
kernel. Second, the shared storage medium is not accessi-
ble by the host, since it is controlled directly by the Lanai.
Finally, the Lanai can only access the storage device through
DMA transactions from/to its PCI space, thus even very small
operations have very high latency.

6 Conclusions - Future work

We have described and evaluated experimentally gmblock,
an nbd system over Myrinet which uses an optimized disk-to-
NIC data path. The data path is constructed combining the
user level networking characteristics of Myrinet with Linux’s
VM mechanism, without compromising the security and iso-
lation features of the OS.
We believe this approach is generic enough to be appli-

cable to different types of devices. An example would be
a system for direct streaming of data coming from a video
grabber to structured, filesystem based storage. Moreover our
approach lends itself to resource virtualization: each user may
make use of the optimized data path while sharing access to
the NIC or other I/O device with other users transparently.
In the future, we plan to evaluate the performance of gm-

block on higher-end systems, equipped with PCI-X/PCI Ex-
press buses and more capable storage devices. We also plan
to integrate it as a storage substrate in an existing GPFS/NSD
installation, in order to examine its interaction with the paral-
lel filesystem layer.
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Figure 8. Experimental evaluation on a PCI 64bit/66MHz bus
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