
Compiling Tiled Iteration Spaces for Clusters

Georgios Goumas, Nikolaos Drosinos, Maria Athanasaki and Nectarios Koziris
National Technical University of Athens

Dept. of Electrical and Computer Engineering
Computing Systems Laboratory

e-mail: �goumas, ndros, maria, nkoziris�@cslab.ece.ntua.gr

Abstract

This paper presents a complete end-to-end framework to
generate automatic message-passing code for tiled iteration
spaces. It considers general parallelepiped tiling transfor-
mations and general convex iteration spaces. We aim to
address all problems concerning data parallel code gener-
ation efficiently by transforming the initial non-rectangular
tile to a rectangular one. In this way, data distribution and
communication become simple and straightforward. We
have implemented our parallelizing techniques in a tool
which automatically generates MPI code and run several
experiments on a cluster of PCs. Our experimental results
show the merit of general parallelepiped tiling transforma-
tions, and confirm previous theoretical work on scheduling-
optimal tile shapes.

Index Terms: Loop tiling, clusters, data parallel, code gen-
eration, MPI.

1 Introduction

Using clusters to deliver high performance to scientific
and commercial applications is considered as the state of
the art in high performance computing. Clusters are becom-
ing increasingly popular due to their affordable scalability,
low cost and high aggregate network bandwidth. On the
other hand, it is generally accepted that they are difficult to
program, since they lack a virtually shared view of global
memory. Clusters, in general, comply to the distributed-
memory model, since each node has its own local mem-
ory, and require therefore communication via message pass-
ing, using libraries such as MPI or PVM. This means that,
in order to program clusters, one must be acquainted with
such message-passing libraries. Although this may be quite
likely in the scientific community, it is definitely not the
usual case in the commercial one. More importantly, writ-
ing efficient hand-made message-passing code is a very
intricate task requiring deep knowledge of both the algo-

rithm and the underlying architecture. Evidently, in order
to achieve acceptable execution speedups and further ex-
tend the popularity of clusters to the commercial commu-
nity, the programmer needs to be released from the tasks of
both writing message-passing code as well as optimizing it,
by assigning these tasks to the compiler.

Tiling transformation is one of the most popular loop
transformations discussed in the literature, proposed to en-
hance locality in uni-processors and achieve coarse-grain
parallelism in multiprocessors. Tiling groups a number
of iterations into a tile, which is executed uninterruptedly,
while communication between processors occurs just be-
fore and after the computations within a tile. A lot of dis-
cussion has been made concerning the selection of an opti-
mal tiling transformation. Ramanujam and Sadayappan in
[12], Xue in [15] and Boulet et al. in [4] studied the effect
of the tile shape on the communication imposed by a tile,
and proved that the communication-minimal tiling can de-
rive from the algorithm’s tiling cone. Moving one step fur-
ther, Hodzic and Shang in [9] discussed the effect of the tile
shape and size on the overall completion time of an algo-
rithm taking into account the iteration space bounds. In [10]
Hodzic and Shang proved that the scheduling-optimal tile
shape, i.e. the one that leads to minimum execution time,
is derived from the algorithm’s tiling cone similarly to the
communication-optimal tiling, as described in [4, 15, 12].

Despite all these methods for the selection of a proper
tiling transformation to minimize communication volume
and overall execution time in distributed memory machines,
general parallelepiped tiling is not used by commercial and
research compilers ([1, 2, 5, 6, 13]). Furthermore, no com-
plete approach has been presented concerning implementa-
tion issues for non-rectangular tiling transformations. Per-
forming proper data distribution and determining commu-
nication sets in this case are far from being straightforward.
In this paper we present a complete approach to generate
data-parallel code, for arbitrarily tiled iteration spaces to
be executed onto distributed memory machines. We ad-
dress issues such as transformed loop bound calculation,

iteration and data distribution and automatic message pass-
ing code generation. We continue previous work on effi-
cient sequential tiled code generation. More specifically,
in [7] we presented an approach to drastically reduce the
compilation time for tiled iteration spaces. We transformed
the non-rectangular tile into a rectangular one using a non-
unimodular transformation � � directly deriving from the
tiling transformation � . We called the transformed (rect-
angular) tile in the axes origins the Transformed Tile Iter-
ation Space (����). We used the hermite normal form�� � of � � to determine the exact bounds and strides of the
loop that will traverse the ����. The introduction of the
���� significantly reduces the difficulty brought about by
parallelepiped tile shapes, as far as code generation is con-
cerned. We shall continue using this transformation in the
parallelization process. We assign chains of transformed
rectangular tiles to each processor and allocate proper local
data spaces. Using � �, local iteration and data spaces are
both rectangular, enabling efficient memory management,
while transition between the two local spaces is also sim-
ple and straightforward. In addition, following this scheme,
we deduce very simple compile-time criteria to determine
the communication points. Thus, we parallelize tiled iter-
ation spaces with a negligible compile-time and run-time
overhead, completely dwarfed by the considerable gain in
parallel execution speedup.

We have implemented a tool that automatically generates
data parallel MPI code and run several examples on a cluster
of workstations interconnected via FastEthernet. Our goal
is to accentuate the merit of non-rectangular tiling transfor-
mations and to confirm previous theoretical work proposing
the selection of a tiling transformation parallel to the tiling
cone. Indeed, our experimental results show that a proper
non-rectangular tiling transformation can lead to remark-
able increase in speedups.

The rest of the paper is organized as follows: In Sec-
tion 2 we define our problem domain along with some no-
tation used throughout the paper, we describe tiling trans-
formation and review previous work on efficient sequential
tiled code generation. In Section 3 we present our imple-
mentation framework including computation distribution,
data distribution and message passing code generation. Sec-
tion 4 presents experimental results from the application of
our method to real problems. Finally, Section 5 summarizes
our results and proposes future work.

2 Preliminary Concepts

2.1 Domain of the Algorithms - Notation

In this paper we consider algorithms with perfectly
nested FOR-loops with uniform and constant dependen-
cies. That is, our algorithms are of the form:

FOR �� � �� TO �� DO

FOR �� � �� TO �� DO

...

FOR �� � �� TO �� DO

�������� �� � ������� � ����� � � � � ������ � ������

ENDFOR

...

ENDFOR

ENDFOR

where: (1) � � ���� ���� ���, (2) �� � ����� � � � � ����,
(3) �� and 	� are rational-valued parameters, (4)
�� and 	� (
 � �����) are of the form: �� �
�
���������� � � � � ������� � � � � �������� � � � � ������� and
	� � ������������ � � � � ������� � � � � �������� � � � � �������,
where ��� and ��� are affine functions. We are dealing
with general and parameterized convex spaces, with the
only assumption that the iteration space is defined as
the bisection of a finite number of semi-spaces of the
�-dimensional space ��. The requirement for perfectly
nested loops is a trivial one so that loops can be tiled
([12, 4, 15]). The dependencies are considered uniform and
constant, i.e. independent of the indexes of computations
and are expressed by dependence vectors ��� ��� � � � � �� .
To simplify our model, we consider single assignment
statements with one array variable. Note, however, that this
is only a notational restriction, since all of the techniques
presented in this paper can be easily adapted to multiple
statements on multiple arrays.

Throughout this paper the following notation is used: �
is the set of integers, � is the number of nested FOR-loops
of the algorithm and � is the number of dependence vectors.
If � is a matrix, we denote
�� the matrix element in the
�-th row and �-th column. We denote a vector as
 or �

according to the context. The
-th element of the vector
is denoted
�. The dependence matrix of an algorithm is
the set of all dependence vectors: � � ���� ��� � � � � ���.
�� � �� is the set of indexes, or the Iteration Space of an
algorithm: �� � ������ ���� ������ � � 	 ��
 ��
 	�� �

�
 ��. Each point in this �-dimensional integer space is
a distinct instance of the loop body. Accordingly, the Data
Space, denoted ��, is defined as: �� � �������� � ���,
where �� is the write array reference.

2.2 Tiling Transformation

In a tiling transformation, the index space � � is par-
titioned into identical �-dimensional parallelepiped areas
(tiles or supernodes) formed by � independent families of
parallel hyperplanes. Tiling transformation is defined by
the �-dimensional square matrix � . Each row vector of �
is perpendicular to one family of hyperplanes forming the
tiles. Dually, it can be defined by matrix � , which con-
tains the side-vectors of a tile as column vectors. It holds

P’

H’

1

2

Transformed Tile Iteration Space (TTIS) Tile Iteration Space (TIS)

2

1

j

j

j’

j’0 5 10

5

10

15

20

0 5 10

5

10

Figure 1. Traverse the ��� with a non-unimodular transformation

2j

j1

~

222

~

111

21 21

~

c =h’ =5

c =h’ =1

a = h’ = 2

Figure 2. Steps and incremen-
tal offsets in ���� derived
from matrix �� �

� � ���. The tile size is given by ������ �� � ����������.
The following spaces are derived from a tiling transforma-
tion � , when applied to an iteration space � �.

1. The Tile Iteration Space ������ � �� � ������� �
��, which contains all points that belong to the tile
starting at the axes origins.

2. The Tile Space ������ �� � ������ � ����� � �
���, which contains the images of all points � � � �

according to tiling transformation.

3. The Tile Dependence Matrix �� � ������ � �����
���� � � �� � � ����, which contains the dependen-
cies between tiles.

2.3 Sequential Tiled Code Generation

In [7] we have presented a complete method to efficiently
generate sequential tiled code, that is, code that reorders
the initial execution of the algorithm according to a general
tiling transformation � . The tiled iteration space is now
traversed by a �� dimensional loop, the � outermost loops
enumerating the tiles and � innermost sweeping the points
within tiles. We presented an efficient method to calculate
the lower and upper bounds (��� and 	�� respectively) for a
loop control variable ��� belonging to the � outer loops. In
order to calculate the corresponding bounds for the � in-
nermost loops, we transformed the original non-rectangular
tile to a rectangular one, using a non-unimodular transfor-
mation � � directly derived from � . Specifically, it holds
� � � � � , where � is a � � � diagonal matrix such that
����� � ��, and �� is the
-th row of � ([7]). The in-
verse of matrix � � is denoted � �. We shall continue using
this transformation in the parallelization process presented
in this paper and thus we need to introduce some basic
concepts and notations found in greater detail in [7]. Fig-
ure 1 shows the transformation of the ��� into a rectangu-
lar space called the Transformed Tile Iteration Space ����

using matrices � � and � �. If �� � �� and � � � ����,
the corresponding � � � � is found by the expression:
� � ��� � � ���. Code generation for the loop that will
traverse the ���� is straightforward: the lower and upper
bounds of control variable � �� (��� and 	�� respectively) can
be easily determined: it holds: � �� � � and 	�� � ��� � �
(for boundary tiles these bounds can be corrected using in-
equalities describing the original iteration space). Note, that
each loop control variable may have a non-unitary stride
and non-zero incremental offsets. We shall denote the in-
cremental stride of control variable � �� as ��. In addition,
control variable � �� may have
� � incremental offsets, one
for the increment of each of the
�� outermost control vari-
ables, denoted
�� (� � � � � �
 � �). In [7] it is proven that
strides and initial offsets in our case can be directly derived
from the Hermite Normal Form (HNF) of matrix � �, de-
noted �� �. Specifically, it holds: �� � ����� and
�� � �����
(Fig. 2).

3 Data Parallel Code Generation

The parallelization of the sequential tiled code involves
issues such as computation distribution, data distribution
and communication between processors. Tang and Xue in
[14] addressed the same issues for rectangularly tiled iter-
ation spaces. We shall generate efficient data parallel code
for non-rectangular tiles without imposing any further com-
plexity. The underlying architecture is considered a (���)-
dimensional processor mesh. Thus, each processor is iden-
tified by a (� � �)-dimensional vector denoted � ��. The
memory is physically distributed among processors. Pro-
cessors perform computations on local data and communi-
cate with each other with messages in order to exchange
data that reside to remote memories. In other words, we
consider a message-passing environment (like MPI) over
a NUMA architecture. Note, however, that the (� � �)-
dimensional underlying architecture is not a physical re-

striction, but a convention for processor naming. It is clear,
that, this abstract model can be easily implemented with
a cluster of computers, interconnected with a commercial
interconnection network. The general intuition in our ap-
proach is that since the iteration space is transformed by �
and � � into a space of rectangular tiles, then each processor
can work on its local share of “rectangular” tiles and, fol-
lowing a proper memory allocation scheme, perform opera-
tions on rectangular data spaces as well. After all computa-
tions in a processor have been completed, locally computed
data can be written back to the appropriate locations of the
global data space. In this way, each processor essentially
works on iteration and data spaces that are both rectangu-
lar, and properly translates from its local data space to the
global one.

3.1 Computation and Data Distribution

Computation distribution determines which computa-
tions of the sequential tiled code, will be assigned to which
processor. The � innermost loops of the sequential tiled
code that access the internal points of a tile will not be par-
allelized and thus parallelization involves the distribution
of tiles (traversed by the outermost �-dimensional loop) to
processors. Hodzic and Shang in [9] mapped all tiles along
a specific dimension to the same processor and used hyper-
plane � � ��� � � � � �	 as time schedule vector. In addition to
this, previous work [3] in the field of UET-UCT task graphs
has shown that if we map all tiles along the dimension with
the maximum length (i.e. maximum number of tiles) to
the same processor, then the overall scheduling is optimal,
as long as the computation to communication ratio is one.
We follow this approach in order to map tiles to processors
trying to adjust tile size properly. Let us denote the �-th
dimension as the one with the maximum total length. Ac-
cording to this, all tiles indexed by ������ � � � � � �

�
	� � � � � ��� �,

where ��� � �!�"�, � � �� � � � �� � ��� � �� � � � � � and
��	
 ��	
 	�	 are executed by the same processor. The
� � � coordinates of a tile (excluding ��) will identify the
processor that a tile is going to be mapped to (� ���. All tiles
along ��	 (denoted also as ��) are sequentially executed by
the same processor, one after the other, in an order speci-
fied by a linear time schedule. This means that, after the
selection of index ��	 with the maximum trip count, we re-
order all indexes so that ��	 becomes the innermost index.
This corresponds to loop index interchange or permutation.
Since all dependence vectors �� in �� are considered lex-
icographically positive, the interchanging or reordering of
indexes is valid (see also [11]).

In a NUMA architecture, the data space of the original
algorithm is distributed to the local memories of the var-
ious nodes forming the global data space. Data distribu-
tion decisions affect the communication volume, since data

m
ap

pi
ng

 d
im

en
si

on

t=0

t=1

t=2

t=3

j'1

j''2

j''1

j'2

map-1

map

LDS TTIS
..
.

off1

off2

Computation Storage

Communication Storage

Unused Space

Figure 3. Local Data Space #�� and Trans-
formed Tile Iteration Space ����

that reside in one node may be needed for the computa-
tion in another. In our approach, we follow the “computer-
owns” rule, which dictates that a processor owns the data
it writes and thus, communication occurs when one pro-
cessor needs to read data computed by another. So, the
original location of an array element is where it is com-
puted. Substantially, the memory space allocated by a pro-
cessor represents the space where computed data are to be
stored. This means that each processor iterating over a
number of transformed rectangular tiles (����s), can lo-
cally store its computed data to a rectangular data space.
At the end of all its computations, the processor can place
its locally computed data to the appropriate positions of the
global Data Space (��). The data space computed by a
tile could be an exact image of the ���� but in this case
the holes of the ���� would correspond to unused extra
space. In addition to the space storing the computed data,
each processor needs to allocate extra space for communi-
cation, that is memory space to store the data it receives
from its neighbors. This means that we need to condense
the actual points of the ���� and provide further space for
receiving data. Since, after all transformations, we finally
work with rectangular sets, this Local Data Space denoted
#�� allocated by a processor can be easily defined as fol-
lows: #�� � ���� � ����
 ���� $!��� � �������
 �
�� � � � � ��

� � 	 �
 ���	 $!��	 � ����		��	�, where
��� denotes the number of tiles assigned to the particular pro-
cessor. As shown in Figure 3, #�� consists of the mem-
ory space required for storing computed data (black dots)
and for buffering receiving data (grey dots) of a tile, multi-

plied by the number of tiles assigned to the processor. White
squares depict unused data. The offset !���, which expands
the space to store receiving data, derives from the commu-
nication criteria of the algorithm as shown in the next sub-
section.

)(ypidLDS

Jn

)(xpidLDS

loc()

loc–1()

fw()

DS

loc()
loc–1()

j2

j1

w1

w2

j2''

j2''

j1''

j1''

Figure 4. Relations between ��, �� and #��

Recall that each processor iterates over the ���� for as
many times as the number of tiles assigned to the proces-
sor. If � is the current tile and � � � ���� the current in-
stance of the inner �-dimensional loop, function �
 �� �� ��
determines the memory location in #�� where the com-
putation for this iteration is to be stored (Figure 3). Appar-
ently, �
 ������� is its inverse. Function �!���� in Table 1
uses �
 ���� �� in order to locate the processor � �� and the
memory location � �� � #��, where the computed data of
iteration point � � �� is to be stored. Inversely, Table 2
shows the series of steps in order to locate the correspond-
ing � � �� for a point � �� � #�� of processor � ��. Thus,
�!����� is called by processors at the end of their compu-
tations, in order to transit from their #�� to the original
iteration space ��. In the sequel, the corresponding point
in the Data Space �� is found via �� (Figure 4). All ex-
pressions in Tables 1 and 2 derive from the properties of the
two spaces #�� and ���� and the Hermite Normal Form
of matrix � � denoted �� �.

Under our scheme, each processor only allocates exactly
the amount of local memory needed for computation and
communication (minor over-allocation occurs in the few
boundary tiles). Note that direct allocation of a processor’s
share in the original �� would lead to a waste of mem-
ory space, since this generally non-rectangular share would
lead to the allocation of the minimum enclosing rectangu-
lar memory space. Note also that each processor’s share in
the original �� (the footprint of a tile because of ��) is in
general non-rectangular, even if a rectangular tiling trans-

� �� � ����� �� ��:
���� � ������ � !����

� �

���	 � ���		 � ��	���	 � !��	

� ��� ���� � 	
����:
�� � ����

�� � � ��� � ����
��� � �
 ���� ��	 � ��	�

� �� � ���� � � � � � �
�
	��� �

�
	��� � � � � �

�
� �

Table 1. Using function �!��� to locate � � ��

in the #�� of a processor

� � � ������� ���:
� � ����	 � !��	��	��		

��� � ����
��

� � !���� � �
����
���

���������
���

� �

��	 � �	��
��

	 � !��	�� ��		 � �
	���
���

���	��
�

��
�	

� � 	
����� ��� �����:
�� � �
 �������

�� � � ���� � � � � ��	��� �� ��	� ��	��� � � � � ����
� � ��� � � ���

Table 2. Using function �!����� to locate ��� �

#�� of processor � �� in ��

formation is applied. Our method, however, forces the local
data space of each processor to be rectangular, allowing thus
more efficient memory management. In addition, if we also
take into account that data spaces for common computation-
ally intensive algorithms are very large, and will probably
not fit in each node’s memory, the compression of the local
space to the #�� is in most cases necessary. Eventually,
this leads to a trade-off between computational complex-
ity and allocated memory space, since extra expressions are
needed to address the #��, but this minor overhead does
not significantly affect performance. Finally, note that stor-
ing data accessed by a non-rectangular tile to a dense rect-
angular data space also exploits cache locality.

3.2 Communication

Using the iteration and data distribution schemes de-
scribed before, data that reside in the local memory mod-
ule of one processor may be needed by another due to al-
gorithmic dependencies. In this case, processors need to
communicate via message passing. The two fundamental
issues that need to be addressed regarding communication
are the specification of the processors each processor needs
to communicate with, and the determination of the data that

need to be transferred in each message.

As far as the communication data are concerned, we fo-
cus on the communication points, e.g. the iterations that
compute data read by another processor. We further ex-
ploit the regularity of the ���� to deduce simple crite-
ria for the communication points at compile time. More
specifically, a point � � � ���� corresponds to a commu-
nication point according to the
-th dimension if the
-th
coordinate of � � � ��� is greater than the respective ����-
bound at the
-th dimension for some transformed depen-
dence vector ��� � �� (�� � � ��). In other words, � �

is a communication point respective to the
-th dimension
when it holds � �� � �
������� % ��� � � or equivalently
��� � ��� ��
�������. We define the communication vec-
tor �&& � ����� � � � � ���� where ��� � ��� � �
�������.
It is obvious that �&& can be easily determined at compile
time. Note that the offsets in #�� referenced in �3.1 can
easily arise as follows: !��� � ��
������������

� �
and !��	 � �		��	.

Communication takes place before and after the execu-
tion of a tile. Before the execution of a tile, a processor
must receive all the essential non-local data computed
elsewhere, and unpack these data to the appropriate
locations in its #��. Dually, after the completion of a
tile, the processor must send part of the computed data
to the neighboring processors for later use. We adopt the
communication scheme presented by Tang and Xue in
[14], which suggests a simple implementation for packing
and sending the data, and a more complicated one for
the receiving and unpacking procedure. The asymmetry
between the two phases (send-receive) arises from the fact
that a tile may need to receive data from more than one
tiles of the same predecessor processor, but it will send its
data only once to each successor processor, satisfying all
the tile dependencies that lead to different tiles assigned to
the same successor in a single message. In other words, a
tile will receive from tiles, while it will send to processors.
Let �	 be the projection of �� in the � � � dimensions,
when the mapping dimension � is collapsed. �	 ex-
presses processor dependencies, meaning that, in general,
processor � �� needs to receive from processors � �� � �	

and send to processors � �� � �	 for all �	 � �	. The
following schemes for receive-unpack and pack-send have
been adopted according to the MPI platform. �	����
denotes the processor dependence �	 that corresponds
to a tile dependence �� , while ����	� denotes all tile
dependencies �� that generate processor dependence �	.
Function minsucc��"� �	� denotes the lexicographically
minimum successor tile of tile �" in processor direction
�	, while function valid(�") returns true if tile �" is
enumerated. #� denotes an array in local memory which
implements the #��.

RECEIVE(
��� �� �
�� 	��)
FOR �� �
� DO /*For all tile dependencies...*/

/*...if predecessor tile valid and current tile
lexicographically minimum successor...*/
IF(valid�� 	
��� ���� ��� �

� 	
��� ���=minsucc�� 	
��� ���� ��,�������)
/*...receive data from predecessor processor...*/
MPI Recv(buffer,Rank(
��� ������),...);
/*...and unpack it to ��� of current processor.*/
count:=0;
FOR ��

�
� ������

�
� ��

�
���� TO ��

�
STEP=�� DO

...
FOR ��� � ��� TO ��� STEP=�� DO
...
FOR ��� � �������� �

�
����� TO ��� STEP=�� DO

LA[map(��,�� � ���)-�
��
�
���
��

� � � � �
��
�
���
��

�]:=

buffer[count++];
ENDFOR
...

ENDFOR
...

ENDFOR
ENDIF

SEND(
��� �� �
�� 	��)
FOR �� �
� DO /*For all processor dependencies...*/

/*...if a valid successor tile exists...*/
IF(������� �
�:valid�� 	
��� ��� � �������)

/*...pack communication data to buffer...*/
count:=0;
FOR ��

�
� ������

�
� ��

�
���� TO ��

�
STEP=�� DO

...
FOR ��� � ��� TO ��� STEP=�� DO
...
FOR ��� � �������� �

�
���

���� TO ��� STEP=�� DO
buffer[count++]:=LA[map(��,�� � ���)];

ENDFOR
...

ENDFOR
...

ENDFOR
/*...and send to successor processor.*/
MPI Send(buffer,Rank(
��� ��),...);

ENDIF

Summarizing, the generated data parallel code for the
loop of �2.1 would have a form similar to the following:

FORACROSS
��� � ��
�

TO ��
�

DO

...

FORACROSS
����� � �����
TO �����

DO

/*Sequential execution of tiles*/
FOR �� � ��� TO ��� DO

/*Receive data from neighboring tiles*/
RECEIVE(
��� �� �
�� 	��);

/*Traverse the internal of the tile*/
FOR ��

�
� ��

�
TO ��

�
STEP=�� DO

...

FOR ��� � ��� TO ��� STEP=�� DO

/*Perform computations on Local Data Space ���*/
� �� �� � ��� �

�����
���� ��� � � ������
��� � ��
�
� ���� � � � �

�����
��� � ��� � �����

ENDFOR

...

ENDFOR

/*Send data to neighboring processors*/
SEND(
��� �� �
�� 	��);

ENDFOR

ENDFORACROSS

...

ENDFORACROSS

4 Experimental Results

We have implemented our parallelizing techniques in a
tool which automatically generates C++ code with calls to
the MPI library and run our examples on a cluster with 16
identical 500MHz Pentium III nodes with 128MB of RAM.
The nodes run Linux with kernel 2.2.17 and are intercon-
nected with FastEthernet. We used the gcc v.2.95.2 com-
piler for the compilation of the sequential programs and
mpiCC (which also uses gcc v.2.95.2) for the compilation
of the generated data-parallel programs. In both cases the
-O2 optimization option was applied. Our goal is to inves-
tigate the tile shape effect on the overall completion time of
an algorithm. We used three real problems, Gauss Succes-
sive Over-relaxation (SOR), the Jacobi algorithm and ADI
integration. In each case, we applied rectangular and non-
rectangular tiling transformations. We present the speedups
obtained for various tile sizes and iteration spaces.

4.1 Results for SOR

The SOR loop nest is as follows:

FOR t=1 TO M DO

FOR i=1 TO N DO

FOR j=1 TO N DO

A[t,i,j]:=�
�
(A[t,i-1,j]+A[t,i,j-1]+

A[t-1,i+1,j]+A[t-1,i,j+1])+

(1-�)A[t-1,i,j];

ENDFOR

ENDFOR

ENDFOR

Since the dependencies contain negative coefficients, the
loop needs to be skewed in order to be rectangularly tiled.

As in [15], we use � �

�
� � � �

� � �
� � �

�
� as skewing matrix.

The resulting loop nest is:

FOR t’=1 TO M DO

FOR i’=t’+1 TO t’+N DO

FOR j’=2t’+1 TO 2t’+N DO

t:=t’; i:=-t’+i’;j:=-2t’+j’;

A[t,i,j]:=�
�
(A[t,i-1,j]+A[t,i,j-1]+

A[t-1,i+1,j]+A[t-1,i,j+1])+

(1-�)A[t-1,i,j];

ENDFOR

ENDFOR

ENDFOR

The dependence matrix of the skewed SOR is � ��
� � � � � �

� � � � �
� � � � �

�
� and the corresponding tiling cone is

defined by the rows of matrix � �

�
���

� � �
� � �

�� � �
�� � �

�
���. Al-

though non-rectangular tiling can be directly applied to the
original loop nest, we choose to apply both rectangular and
non-rectangular tiling to the skewed one for the compar-
ison to be more obvious. For a non-rectangular transfor-
mation, we select three vectors parallel to the first three
lines of matrix �, i.e. the tiling transformation is of the

form: ��� �

�
�

�

� �

� �

�
�

� �

�
� �

�

�
�, while the rectangular

tiling transformation is defined by a matrix of the form:

�� �

�
�

�

� �

� �

�
�

� � �

�

�
�, where �� '� (� ��. Note that, if

we select common factors �� '� (for ��� and �� we have
equal tile sizes (����������� � ������������ � �'(). Fur-
thermore, if we map tiles along the third dimension to the
same processor, the communication volume and the num-
ber of processors required are the same in both cases, since
the first two rows of the tiling transformation matrices are
identical. Thus, any differences in execution times will be
due to the different scheduling schemes imposed by the dif-
ferent tile shapes. In order to have a theoretical interpre-
tation of the experimental results that follow, let us focus
on the following general example. The linear scheduling
vector used in our approach is � � ��� � � � ��	. We de-
note the last executed point of the original iteration space as
�	

. Apparently, this point will belong to tile ���	

�
and will execute at time step � � ����	

�. In our
skewed SOR example �	

 � �)�) � *�) � �*�
and thus, using rectangular tiling this point will execute
at time step �� � �

� ���

�
� ����

�
. Accordingly,

using non-rectangular tiling �	

 will execute at ��� �
�

� ���

�
� ����

�
� �

�
� �� �

�
�

$ ��. Thus, we
expect non-rectangular tiling to exhibit lower total execu-
tion times.

We performed our experimental results for four different
iteration spaces. In each iteration space we held factors �
and ' constant, such that the required number of MPI pro-
cesses would be �� (one process per processor). We then
varied factor (in order to test different tile sizes. Figure 5

shows the maximum speedups obtained in each iteration
space, while Figure 6 shows the speedups obtained in one
iteration space for various tile sizes.

0

2

4

6

8

10

12

M=100
N=100

M=200
N=100

M=150
N=150

M=100
N=200

Iteration Space

S
pe

ed
up

Rectangular Tiling Non-rectangular Tiling

Figure 5. SOR: maximum speedups for differ-
ent iteration spaces

5

7

9

11

900 990 1800 2160 2640 3150

Tile Size

S
pe

ed
up

Rectangular Tiling Non-rectangular Tiling

Figure 6. SOR: speedups for various tile sizes
() � ���, * � ���)

4.2 Results for Jacobi

The Jacobi loop nest is:

FOR t=1 TO T DO

FOR i=1 TO I DO

FOR j=1 TO J DO

A[t,i,j]:=0.25(A[t-1,i-1,j]+A[t-1,i,j-1]+

A[t-1,i+1,j]+A[t-1,i,j+1]);

ENDFOR

ENDFOR

ENDFOR

Note that this loop also needs to be skewed in order to be

legally tiled. We use � �

�
� � � �

� � �
� � �

�
� as skewing matrix

and thus the skewed loop nest is:

FOR t’=1 TO T DO

FOR i’=t’+1 TO t’+I DO

FOR j’=t’+1 TO t’+J DO

t:=t’; i:=-t’+i’; j:=-t’+j’;

A[t,i,j]:=0.25(A[t-1,i-1,j]+A[t-1,i,j-1]+

A[t-1,i+1,j]+A[t-1,i,j+1]);

ENDFOR

ENDFOR

ENDFOR

The dependence matrix of the skewed Jacobi is � ��
� � � � �

� � � �
� � � �

�
� and the corresponding tiling cone is � �

�
���

�� � �
� �� �

�� �� �
�� � �

�
���. In this case, in order to have the same

comparison features as in SOR, we applied non-rectangular

tiling transformation defined by ��� �

�
�

�

� �

�

�

� �

�
�

� � �

�

�
�.

If we choose common �� '� (factors and map tiles along
the first dimension to the same processor, we have the same
tile size, communication volume and number of processors
required both for rectangular and non-rectangular tiling.
Choosing the tile’s cutting hyperplanes from the surface of
the tiling cone would probably lead to lower total execu-
tion times as proven in [10], but in this case comparison
with rectangular tiling would be difficult, since factors like
tile size, communication volume and number of processors
would differ. In this case we have �	

 � ��� ���� ����
and following similar analysis as in the case of SOR we
have �� � �

� ���

�
� ���

�
while ��� � �� �

���
�

$ ��.
Again here we expect non-rectangular tiling to achieve bet-
ter execution times.

In this example, we held ' and (factors constant
throughout the experiments in each iteration space and var-
ied factor � in order to test different tile sizes. Figure 7
shows the maximum speedups obtained in each of the four
iteration spaces, while Figure 8 shows the speedups ob-
tained in one iteration space for various tile sizes.

0

2

4

6

8

10

12

T=50
I=J=100

T=100
I=J=100

T=50
I=J=200

T=100
I=J=200

Iteration Space

S
pe

ed
up

Rectangular Tiling Non-rectangular Tiling

Figure 7. Jacobi: maximum speedups for dif-
ferent iteration spaces

4

6

8

10

288 512 648 800 1280 1620

Tile Size

S
pe

ed
up

Rectangular Tiling Non-rectangular Tiling

Figure 8. Jacobi: speedups for various tile
sizes (� �
�, � � � � ���)

4.3 Results for Adi Integration

Adi Integration can be written in a triply nested loop as
shown in Table 3. The dependence matrix of Adi integration

is � �

�
� � � �

� � �
� � �

�
� and the corresponding tiling cone

is � �

�
� � �� ��

� � �
� � �

�
�. No skewing is needed in this

case since all dependence vectors are non-negative. In this
experiment series we used three different non-rectangular

matrices defined by: ���� �

�
�

�

� �

�

� �

�
�

� � �

�

�
�, ���� �

�
�

�

� � �

� �

�
�

� � �

�

�
� and ���� �

�
�

�

� �

� �

� �

�
�

� � �

�

�
�. Note

that the third one is parallel to the directions of the tiling
cone. Again here we map tiles along the first dimension to
the same processor. All four transformations applied (the
rectangular and the three non-rectangular ones) have the
same tile size, communication volume and require the same
number of processors. Similar to the analysis in the pre-
vious experiments, since �	

 � ���*�*�, it holds that
�� � �

� �

�
� �

�
, ���� � �� �

�
�

, ���� � �� �
�
�

and

���� � �� �
�
�
� �

�
. Thus, ���� $ ����� ���� $ ��. Fig-

ure 9 shows the maximum speedups obtained in each of the
four iteration spaces, while Figure 10 shows the speedups
obtained in one iteration space for various tile sizes.

4.4 Comments on the Results

The first conclusion easily drawn from all sets of exper-
iments is that, as expected, in all cases (i.e. for each al-
gorithm, iteration space and tile size) non-rectangular tiling
leads to better execution speedups than rectangular. In SOR

8

8.5

9

9.5

10

10.5

11

11.5

12

T=100 N=256 T=200 N=256 T=300 N=256 T=400 N=256

Iteration Space

S
pe

ed
up

Rectangular Tiling Non-rectangular Tiling 1

Non-rectangular Tiling 2 Non-rectangular Tiling 3

Figure 9. ADI Integration: maximum
speedups for different iteration spaces

4

6

8

10

12

14

8192 12288 16384 20480 24576 28672 32768 36864 40960 61440

Tile Size

S
pe

ed
up

Rectangular Tiling Non-rectangular Tiling 1

Non-rectangular Tiling 2 Non-rectangular Tiling 3

Figure 10. ADI Integration: speedups for var-
ious tile sizes (� � ���, * � �
�)

we had an average speedup improvement of ����
, in Ja-
cobi ���
 and in ADI Integration ����
. This is a remark-
able result since the improvement only arose from a slight
change in the rectangular tiling transformation matrix � .
In fact, in the first two sets of experiments only one ele-
ment of matrix � was changed, while in the last set only
two. Note also that in the last set the gradual improvement
from the rectangular tiling to the non-rectangular one taken
from the tiling cone is much more obvious. This is to con-
firm the theoretical work in [10], where it is proven that if
any of the row vectors of � lies in the interior of the tiling
cone, then the corresponding tiling transformation is not op-
timal. Non-rectangular tiling defined by ���� and ���� ex-
hibit the same speedups as expected (we used equal ' and
(factors) and lower than the one defined by ���� (but still
higher than the rectangular one). We also need to point out
that our tool is not yet optimized for performance. Our main
goal was to compare the total execution times imposed by

FOR t=1 TO T DO

FOR i=1 TO N DO

FOR j=1 TO N DO

X[t,i,j]:=X[t-1,i,j]+X[t-1,i,j-1]*A[i,j]/B[t-1,i,j-1]-X[t-1,i-1,j]*A[i,j]/B[t-1,i-1,j];

B[t,i,j]:=B[t-1,i,j]-A[i,j]*A[i,j]/B[t-1,i,j-1]-A[i,j]*A[i,j]/B[t-1,i-1,j];

ENDFOR

ENDFOR

ENDFOR

Table 3. Code of Adi Integration

rectangular and non-rectangular tiling transformations for
various algorithms. We believe that we can achieve better
speedups by using certain technical optimizations.

5 Conclusions-Future Work

In this paper we presented a complete approach to gener-
ate message-passing code for iteration spaces transformed
by general parallelepiped tiling transformations. We thor-
oughly addressed issues such as data distribution, iteration
distribution and automatic message passing, and generated
efficient data-parallel code for a cluster of PCs. Our method
is based on transforming the non-rectangular tile into a rect-
angular one using a non-unimodular transformation. We
have implemented our parallelizing techniques using MPI
and run several experiments in our cluster. After studying
the tile shape effect on the overall execution time of an al-
gorithm, we were able to confirm previous theoretical work,
which claims that selecting a tiling transformation from the
sides of the tiling cone leads to optimal scheduling schemes.
Future work includes the incorporation of the computation
and communication overlapping scheduling schemes pre-
sented in [8] into our method, and the further analysis of
the tile shape effect on the overall completion time of an
algorithm when these advanced scheduling schemes are ap-
plied.

References

[1] V. Adve and J. Mellor-Crummey. Advanced Code Genera-
tion for High Performance Fortran. In Languages, Compila-
tion Techniques and Run Time Systems for Scalable Parallel
Systems, chapter 18, Lecture Notes in Computer Science Se-
ries. Springer-Verlag, 1997.

[2] S. P. Amarasinghe and M. S. Lam. Communication Opti-
mization and Code Generation for Distributed Memory Ma-
chines. In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation, Albu-
querque, NM, Jun 1993.

[3] T. Andronikos, N. Koziris, G. Papakonstantinou, and
P. Tsanakas. Optimal Scheduling for UET/UET-UCT Gen-
eralized N-Dimensional Grid Task Graphs. Journal of

Parallel and Distributed Computing, 57(2):140–165, May
1999.

[4] P. Boulet, A. Darte, T. Risset, and Y. Robert. (Pen)-ultimate
tiling? INTEGRATION, The VLSI Jounal, 17:33–51, 1994.

[5] B. Chapman, P. Mehrotra, and H. Zima. Programming in
Vienna Fortran. In Proceedings of the Third Workshop on
Compilers for Parallel Computers, pages 121–160, Jul 1992.

[6] G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer,
C. Tseng, and M. Wu. Fortran-D Language Specification.
Technical Report TR-91-170, Dept. of Computer Science,
Rice University, Dec 1991.

[7] G. Goumas, M. Athanasaki, and N. Koziris. Automatic Code
Generation for Executing Tiled Nested Loops Onto Parallel
Architectures. In Proceedings of the ACM Symposium on
Applied Computing (SAC 2002), Madrid, Mar 2002.

[8] G. Goumas, A. Sotiropoulos, and N. Koziris. Mini-
mizing Completion Time for Loop Tiling with Computa-
tion and Communication Overlapping. In Proceedings of
IEEE Int’l Parallel and Distributed Processing Symposium
(IPDPS’01), San Francisco, Apr 2001. (best paper award).

[9] E. Hodzic and W. Shang. On Supernode Transformation
with Minimized Total Running Time. IEEE Trans. on Par-
allel and Distributed Systems, 9(5):417–428, May 1998.

[10] E. Hodzic and W. Shang. On Time Optimal Supernode
Shape. In Proceedings of the International Conference on
Parallel and Distributed Processing Techniques and Appli-
cations (PDPTA), Las Vegas, CA, Jun 1999.

[11] D. Padua and W. Wolfe. Advanced Compiler Optimizations
for Supercomputers. Communications of the ACM, 29(12),
1986.

[12] J. Ramanujam and P. Sadayappan. Tiling Multidimensional
Iteration Spaces for Multicomputers. Journal of Parallel and
Distributed Computing, 16:108–120, 1992.

[13] E. Su, A. Lain, S. Ramaswamy, D. J. Palermo, E. W.
Hodges, and P. Banerjee. Advanced Compilation Tech-
niques in the PARADIGM Compiler for Distributed Mem-
ory Multicomputers. In Proceedings of the ACM Interna-
tional Conference on Supercomputing (ICS), Madrid, Spain,
Jul 1995.

[14] P. Tang and J. Xue. Generating Efficient Tiled Code
for Distributed Memory Machines. Parallel Computing,
26(11):1369–1410, 2000.

[15] J. Xue. Communication-Minimal Tiling of Uniform Depen-
dence Loops. Journal of Parallel and Distributed Comput-
ing, 42(1):42–59, 1997.

