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ne of the most tedious tasks for a lot of sequential
algorithms is the execution of nested FOR-loops

with data dependencies among their computations. If a
computation in one iteration, depends on a computation
in another iteration, this dependence is presented as the
vector difference of these two iteration indices. The
majority of such algorithms present a regular vector
pattern (uniform data dependencies). This means that the
values of all dependence vectors are constants, i.e., they
are independent of the indices of computations. A
subclass of the class of uniform nested loops is the class
of the unit dependence nested loops, where every
dependence vector has zeroed or unit coordinates. Very
important algorithms used in signal processing, such as
matrix multiplication, LU decomposition, discrete
Fourier transform, convolution and transitive closure fall
into this category. In addition to this, even signal
processing algorithms with non-uniform dependencies
can be transformed into uniform ones [11]. Since
dependence vectors describe computations’ flow, they
are used to find the optimal parallel execution time. The
widely used method is based on Lamport [7] who
introduced the term “hyperplane”. The idea is to find a
time schedule that partitions computations into different
sets, which are called hyperplanes. All index points
belonging to the same set can be executed concurrently.

The major problem after having found a time
schedule, is to organize computations in space, i.e.,
assign indexed computations to processors. Systolic
arrays are widely used in signal processing because, due
to their uniformity, they are suitable for massive

parallelism and low cost implementation (see Kung [6]).
One of the most difficult issues when using a systolic
array is the efficient use of its cells. The regularity of the
systolic array structure imposes serious obstacles in
organizing computations efficiently and thus increasing
the utilization of cells. Most of presented methods for
mapping loop algorithms onto systolic arrays have poor
cell utilization, and use exhaustive search-based
mapping techniques [5], [6], [8], [9].

In this paper we apply the methodology
presented in [2], on signal processing algorithms. In [4]
we have implemented an integrated design tool for the
optimal mapping of nested loops with unit dependencies
on unbounded number of systolic cells.  We did not only
find an optimal time schedule for loop iterations, but we
also assigned the concurrent iterations onto the least
possible number of cells. In this paper we show that
most of the signal processing algorithms can be
automatically synthesized in hardware using the
previously established analysis. Our integrated tool,
accepts as input the nested loop specifications and
produces optimal systolic designs for the subclass of
loops with unit uniform dependencies. This tool
integrates the methods for optimal time and space
scheduling onto unbounded number of processors
presented in [2], and produces VHDL descriptions for
the resulting architecture. In particular, a VHDL
preprocessor called GENVHDL has been implemented,
which translates optimal scheduling and mapping results
into VHDL code, which can be afterwards fed into
VHDL entry CAD tools for synthesis and simulation
(e.g. XILINX, WorkView Plus from VIEWlogic etc).
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The rest of the paper is organized as follows:
Section 2 contains useful notation and definitions;
Section 3 presents the optimal makespan and the
minimum number of cells adequate for scheduling the
iterations of a nested loop. Finally, in Section 4 the
GENVHL preprocessor is analyzed and the application
of the proposed automatic method to a typical example
of an algorithm used in signal processing, the matrix
multiplication, is presented.  This algorithm is
automatically mapped onto VLSI architecture and
optimally implemented using XILINX FPGA devices.
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Our work is focused on signal processing algorithms
that exhibit regular computation patterns. The exact
algorithm model we use is depicted in Fig. 1. This
model is representative for most of the digital signal
processing algorithms.
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Fig. 1: The Algorithmic model.
In Fig. 1:
(1) OL, uL∈Z, 1≤i≤n.
(2) ,=(i�, ..., iQ).
(3) AS�, ..., ASS are assignment statements of the
form V�(,)=E(V�(-�), ..., VN(-N)), where V� is an output
variable, E is an expression of the input variables V�, ...,
VN, and GL=,--L, 1≤i≤k, are constant dependence vectors�

with ]HUR RU XQLW FRRUGLQDWHV only, forming the set DS.
(4) (u�, …, uQ) is called the WHUPLQDO SRLQW of the
algorithm and is denoted PQ.

The LQGH[ VSDFH JQ⊂ZQ is the set of indices {(i�,
..., iQ) | iL∈Z ∧ OL≤i L≤uL, 1≤i≤n}. Each point in this n-
dimensional integer space is a distinct instantiation of
the loop body. In the rest of the paper, we shall abstract
an algorithm A by the ordered pair (DS, JQ).

Notice that the points of JQ are ordered
OH[LFRJUDSKLFDO\; the usual symbol < is used to denote
this (linear) ordering. The following two things should
be emphasized: (1) By definition, dependence vectors
are always > than �, where �=(0, ..., 0) and > is the
OH[LFRJUDSKLF ordering and (2) Dependence vectors are
XQLIRUP, i.e., their elements are constants and not
functions defined over index sets.
'HILQLWLRQ ���.  For every point M of JQ, we define

IN(M) = {L∈JQ | M=L+G, where G∈DS} Q

The unit dependence vectors induce a partial
ordering over the points of the index space in a natural
way. If L and M are two index points, we write L<M iff ∃
G�…∃GN∈DS such that M=L+G�+ … +GN. The intuition
behind the partial ordering notion is that the dependence
vectors represent SUHFHGHQFH FRQVWUDLQWV, which have to
be satisfied in order to correctly complete the iterations
represented by the index points. The formal definition of
the schedule must reflect our intuition that a point M

correctly begins its execution at instant k iff DOO WKH

SRLQWV L∈IN(M) KDYH FRPSOHWHG WKHLU H[HFXWLRQ DQG

FRPPXQLFDWHG WKHLU UHVXOWV �LI QHHGHG� WR M E\ WKDW

LQVWDQW.
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Section 2 models the nested loop index space with UET
grids. We now calculate the RSWLPDO PDNHVSDQ for UET
grid-index spaces. Having established the optimal
makespan, we will proceed to calculate the RSWLPDO

QXPEHU RI FHOOV, i.e., the minimum number of cells
required to achieve the optimal makespan. We present
an optimal time and space scheduling policy for index
spaces with specific space bounds. Our schedule
partitions the iterations of the index space into disjoint
sets. Each set contains vertices, which are executed on
different cells at the same time. Our scheduling policy
guarantees that neighboring iterations of the n�

dimensional index space will be assigned to neighboring
cells of the n-1 dimensional target systolic array. The
time complexity of the scheduling and mapping method
is independent of the index space size and depends only
on the dimension n of the index space.
O A schedule for algorithm A, denoted S(A), is an
ordered couple (S7,0(, S&(//), where S7,0( and S&(// are
the time and processor schedules, respectively, defined
as follows:
(1) S&(//: JQ→{0, …, m}, m∈N, such that M is
assigned to processor S&(//(M), and
(2) S7,0(: J

Q→N such that for every vertex M∈JQ we
have

∀L∈IN(M)S7,0((M)-S7,0((L) ≥
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where S is the processing time and F the communication
delay.
O The PDNHVSDQ of a time schedule S7,0(, denoted
M(S7,0(), is max{S7,0((M)+S | M∈JQ}, where S is the
processing time.
O Given the schedule S(A)=(S7,0(, S&(//), we
define N&(// as max{|{M∈JQ : S7,0((M)=k}| :
0≤k≤M(S7,0()}. Q

The makespan gives the completion time of the
last task and, therefore, determines the time required for
the completion of the whole algorithm. N&(// gives the
maximum number of cells required by the specific
schedule. In our case, and for mapping onto systolic
cells which operate synchronously without extra
communication delays, we assume c=0 and p=1.

In order to achieve our final objective, which is
to design optimal layouts, we must first achieve the
following objectives:
(1) To find an RSWLPDO WLPH VFKHGXOH S7,0(

237
, i.e., a

schedule whose makespan is PLQLPXP.
(2) To establish the RSWLPDO QXPEHU RI FHOOV

N&(//
237

, i.e., the minimum number of systolic cells that
are required to execute an optimal time schedule.
(3) To find an RSWLPDO VSDFH VFKHGXOH S&(//

237
 that

realizes S7,0(
237

 using N&(//
237

 systolic cells from a
multidimensional systolic structure.



A schedule (S7,0(
237

, S&(//
237

) is called RSWLPDO

and is denoted S237(A).
7KHRUHP ���. For every algorithm and every time
schedule S7,0( we have: M(S7,0() = S7,0((PQ)+1.
3URRI: Given in [2].
'HILQLWLRQ ���. Let q(k), 0≤k≤u�+ …+uQ, be the
number of points of the loop that can be executed at
instant k,and q0$; = max{q(k) | 0≤k≤u�+ …+uQ}.Q
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It is apparent that in order to achieve the optimal
makespan, all vertices of the grid must be executed at
the earliest possible time. This fact implies that the
optimal time schedule is actually XQLTXH:
S7,0(

237
(M)=k=k�+ … +kQ, where M=(k�, …, kQ). This

point can be executed by any of the required q(k)
processors for the k time instant. Thus, for every point
of the grid we know in time independent of the size of
the grid when and by which group of processors will be
executed. In principle, we can find a schedule that will
implement the optimal time schedule utilizing exactly
N&(//237

 cells (see [3] for such a schedule). However,
although in that way the resulting schedule will be
optimal in all accounts, it will not be suitable for
mapping into systolic architecture, mainly due to
complicated interconnection network among the
processors. Therefore, what we propose here is a
mapping that reflects the regular computation pattern of
the algorithm and uses the least possible number of
links: Every index point M=(k�, …, kQ) is assigned to cell
F=(k�, …, kQ). If PQ=(u�, …, uQ) is the terminal point of
the loop, the above mapping requires exactly
(u�+1)×(u�+1)× ... ×(uQ+1). Optimality in terms of
parallel time is always guaranteed and if u�≥u�+u�+ …
+uQ (recall that according to our assumption u� is a
maximal coordinate of PQ), then optimality in terms of
number of cells is also achieved. The worst case
scenario regarding the number of redundant processors
is when u�=u�=u�= … =uQ. The greatest advantage of
this methodology is the simplicity of its implementation
and its efficiency in terms of time complexity.
In this section we first present the results from [3]
concerning optimal makespan and the optimal time
schedule which achieves the optimal makespan. Finally,
for the optimal time schedule we give the optimal (i.e.,
the minimum) number of cells required implementing it.
In [2] the following theorems have been shown:
7KHRUHP ���. For every M=(k�, …, kQ)∈JQ

S7,0(
237

(M)=k�+ … +kQ.
Now, we can establish the optimal execution time

for any uniform loop A.
7KHRUHP ���. For every loop A with terminal
point PQ=(u�, …, uQ), M(S7,0(

237
)=u�+ … +uQ+1.

The following theorem gives the value of q(k)
see definition 3.1.
7KHRUHP ���. For every uniform loop with
terminal point PQ=(u�, …, uQ),

q(k)= ∑ ∑
=
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, 0≤k≤u�+ …+uQ.
A trivial consequence of Theorem 4.3 is the

following corollary:
&RUROODU\ ���. For every uniform loop with
terminal point PQ=(u�, …, uQ),

N&(//237
=q0$;.q0$;=q( 



 ++

�

X���X
Q� ).

Every vertex M=(k�, …, kQ) has a PD[LPDO

FRRUGLQDWH, i.e., a coordinate kL for which kL≥kU, 1≤r≤n.
7KHRUHP ���. Let uL be a maximal coordinate of
the terminal point PQ=(u�, …, uQ). If uL≥u�+ … +uL�

�+uL��+ … +uQ, then q0$;  q( 



 ++

�

X���X
Q� )=(u�+1)×

... ×(uL��+1)×(uL��+1)× ... ×(uQ+1).

([DPSOH ���. Consider the following algorithm that
performs the matrix multiplication: C=AxB, where A
5x3 matrix and B 3x3. Notice that for exploiting the full
parallelism of the classical multiplication algorithm, we
use 3D matrices A, B, C. Initial 2D A,B matrices are
copied in the third dimension by statements S�, S� so as
to enable concurrent accesses to them (see[3]).
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Fig. 2: The Algorithm A.
The dependence set DS is {(0, 1, 0), (1, 0, 0), (0,

0, 1)} and the index space J� is {(i�, i�, i�) | 0≤i�≤4,
0≤i�≤2, 0≤i�≤2} with P�=(4, 2, 2) (see Fig. 3). Theorem
4.3 gives:
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0≤k≤8. As we see in Table 2, q0$;=9 for k=4, which
means that N&(//237=9.

Fig. 3: The index space J�.



Fig. 4: The systolic mapping of A.

Table 1: The cardinality of q(k).

K 0 1 2 3 4 5 6 7 8
num of procs: 1 3 6 8 9 8 6 3 1

Table 2: The optimal schedule for A.
&HOO � � � � � � � � �

F����� ������� ������� ������� ������� �������

F����� ������� ������� ������� ������� �������

F����� ������� ������� ������� ������� �������

F����� ������� ������� ������� ������� �������

F����� ������� ������� ������� ������� �������

F����� ������� ������� ������� ������� �������

F����� ������� ������� ������� ������� �������

F����� ������� ������� ������� ������� �������

F����� ������� ������� ������� ������� �������

The schedule for the Algorithm A, which is
depicted in Table 2, is optimal in time and number of
processors. The systolic array that implements this
schedule is depicted in Fig. 4. S
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GENVHDL is a utility program developed to translate
architectural descriptions into VHDL. It accepts as
inputs the original FOR loop statements. From these it
constructs two VHDL files, one describing the structure
of the basic systolic cell and one describing the map of
the whole architecture. Computational elements are
constructed by mapping primitive arithmetic operations
(additions, multiplications etc.) into appropriate
primitive hardware elements. The transformed
dependencies are satisfied by implementing the
appropriate links among the cell of the systolic
architecture and by inserting delay elements, when
needed. All elements are connected together in the map
file.
([DPSOH ���. (Example 4.1 continued).
GENVHDL was used to produce the VHDL systolic
hardware description corresponding to the algorithm A,
presented in Example 3.1. The outcome was used as the
input specification in VIEWlogic ViewSynthesis VHDL
synthesis tool. The resulting schematic was given to
XILINX XACTStep to produce an FPGA
implementation. A floorplan of such an implementation
can be seen in Fig. 5 (device used XC4003).

Fig. 5: FPGA Implementation.
A comparison of this methodology with manual

implementations taken using dataflow style VHDL
descriptions, can be found in [4], showing very
promising results. There has been a considerable
reduction in the total number of used components inside
an FPGA chip when our proposed methodology is
applied . S
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