
Exploring the Performance Limits of Simultaneous Multithreading
for Scientific Codes ∗

Evangelia Athanasaki, Nikos Anastopoulos, Kornilios Kourtis and Nectarios Koziris
National Technical University of Athens

School of Electrical and Computer Engineering
Computing Systems Laboratory

e-mail: {valia, anastop, kkourt, nkoziris}@cslab.ece.ntua.gr

Abstract

Simultaneous multithreading (SMT) has been proposed
to improve system throughput by overlapping instructions
from multiple threads on a single wide-issue processor. The
speedup of a single application that is parallelized into mul-
tiple threads, is often sensitive to its inherent instruction
level parallelism (ILP), as well as the efficiency of synchro-
nization and communication mechanisms between its sepa-
rate, but possibly dependent, threads.

In this paper, we evaluate and contrast software prefetch-
ing and thread-level parallelism (TLP) techniques for a
series of scientific codes executed on an SMT processor.
We explore the performance limits by evaluating the trade-
offs between ILP and TLP for various kinds of instruc-
tions streams. Obtaining knowledge on how such streams
interact when executed simultaneously on the processor,
and quantifying their presence within each application’s
threads, we try to interpret the observed performance for
each application when parallelized according to the afore-
mentioned techniques. In order to amplify this evaluation
process, we also present results gathered from the perfor-
mance monitoring hardware of the processor.

1 Introduction

Simultaneous Multithreading (SMT) is a hardware tech-
nique that allows a superscalar processor to issue instruc-
tions from multiple independent threads to its functional
units, in the same cycle. Through this increased concur-
rency, SMT decreases wasted issue slots and increases flex-
ibility [16].

Along with multithreading, prefetching is one of the
∗This research is supported by the Pythagoras II Project (EPEAEK II),

co-funded by the European Social Fund (75%) and National Resources
(25%).

most popular techniques for tolerating the ever-increasing
memory wall problem. In contrast to multithreading, where
instructions from different threads are simultaneously ex-
ecuted, prefetching tolerates latency by anticipating what
data is needed and moving it to the cache ahead of time,
when the running thread encounters a cache miss.

Regarding SMT, two main techniques were proposed in
literature to utilize the multiple hardware contexts of the
processors for improving performance of a single program:
thread-level parallelism (TLP) and speculative precompu-
tation (SPR). With TLP, sequential codes are parallelized
so that the total amount of work is decomposed into inde-
pendent parts which are assigned to a number of software
threads for execution. In SPR, the execution of programs is
facilitated with the introduction of additional threads, which
speculatively prefetch data that are going to be used by the
sibling computation threads in the near future, thus hiding
memory latencies and reducing cache misses [18], [5], [14].

In this paper we demonstrate that significant perfor-
mance improvements are hard to be achieved for already
optimized parallel applications when running on processors
equipped with hyper-threading(HT) technology([9]), Intel’s
implementation of simultaneous multithreading. Reference
applications are loop-based scientific codes, both with reg-
ular and irregular or random memory access patterns. We
tested the following configurations: First, we balanced
the computational workload of a given benchmark on two
threads, statically partitioning the iteration space. Then, we
ran a main computation thread in parallel with a helper-
prefetching thread. The latter was spawned to specula-
tively precompute addresses that trigger L2 cache misses
and fetch the corresponding data. Synchronization of the
two threads is essential, in order to avoid the helper thread
from running too far ahead, evicting useful data from the
cache. Furthermore, where applicable, we experimented
with combinations of the above two configurations. We
evaluated performance in two ways: First, we gathered re-

sults from specific performance metrics counted by the pro-
cessor’s monitoring registers. Second, we analyzed the dy-
namic instruction mix of each application’s threads, and
recognized the most dominant instructions. Having inves-
tigated the way that synthetic streams composed of these
instructions interact on SMT processors, for different levels
of TLP and ILP, we were able to give further explanations
on the observed performance.

The main contributions of this paper are threefold: First,
we investigate the experimental CPI and interaction for a
number of synthetic instruction streams, common in sci-
entific codes, when executed on an actual SMT processor.
Second, we exhaustively attempt to achieve the best pos-
sible speedup on this processor, by applying two known
techniques proposed in literature for multithreaded execu-
tion, i.e., TLP and SPR. In contrast to simulations so far
presented, with real measurements on actual hardware, sig-
nificant performance improvements are hard to be achieved
for already optimized parallel applications. Finally, a care-
ful analysis of both real and simulation measurements,
identifies resource conflicts which constitute bottlenecks in
achieving high performance.

The rest of the paper is organized as follows. Section 2
describes related prior work. Section 3 deals with imple-
mentation aspects of software techniques to exploit hard-
ware multithreading. Section 4 explores the performance
limits and TLP-ILP tradeoffs, by considering a representa-
tive set of instruction streams. Section 5 describes the ex-
perimental framework, presents performance measurements
obtained from each application, and discusses their evalua-
tion. Finally, we conclude with section 6.

2 Related Work

SMT [16], [17] is said to outperform previous execu-
tion models because it combines the multiple-instruction-
issue features of modern superscalar architectures with the
latency-hiding ability of multithreaded ones. However, the
flexibility of SMT comes at a cost. When multiple threads
are active, the static partitioning of resources (e.g., instruc-
tion queue, reorder buffer, store queue) affects codes with
relative high instruction throughput. Static partitioning, in
the case of identical thread-level instruction streams, lim-
its performance, but mitigates significant slowdowns when
non-similar streams of microinstructions are executed [15].

Cache prefetching [8], [10] is a technique that reduces
the observed latency of memory accesses by bringing data
into cache before it is accessed by the CPU. Numerous
thread-based prefetching schemes, either static or dynamic,
have recently been proposed, including Roth and Sohi’s
Data Driven Multithreading [13], Luk’s Software Con-
trolled Pre-Execution [6], Collins et al., Speculative Pre-
computation [3], and Kim et al., Helper-Threads [5]. The

key idea is to utilize otherwise idle hardware thread contexts
to execute speculative threads on behalf of the main thread.
These speculative threads attempt to trigger future cache-
miss events far enough in advance of access by the non-
speculative (main) thread, so that the memory miss latency
can be masked. A common implementation pattern was
used in these studies. A compiler identifies either statically
or with the assistance of a profile the memory loads that are
likely to cause cache misses with long latencies. Such load
instructions, known as delinquent loads, may also be identi-
fied dynamically in hardware triggering speculative-helper
threads [18]. SPR targets load instructions that exhibit ir-
regular, data-dependent or pointer chasing access patterns.
Traditionally, these loads have been difficult to handle via
either hardware or software prefetchers.

3 Implementation

From a resource utilization perspective, threads perform-
ing software prefetching in SPR usually require less re-
sources than the sibling computation threads, since they do
not perform any meaningful computations that could affect
program state or data. Furthermore, SPR can improve the
performance of program codes that are not easily paralleliz-
able. However, it targets only at reducing memory latencies
and cannot always exploit the multiple units and superscalar
execution capabilities of the SMT processor, especially in
codes which exhibit low ILP. TLP, on the other hand, gives
the opportunity to programs for a better utilization of the
processor’s resources. Since most of these resources, how-
ever, are shared between the threads, contention issues often
arise, introducing performance penalties.

From an implementation point of view, sequential codes
usually can be transformed into thread-level parallel ones
in rather a straightforward manner, provided that they lend
themselves for efficient parallelization. SPR mechanisms,
on the other side, cannot always be incorporated that clearly.
Since precomputation via multithreading must be as effec-
tive as any other software prefetching approach, applica-
tions must be subjected under fine tuning in order to deal
with many synchronization and resource utilization matters
that emerge. The co-existence of precomputation threads
must introduce minimal interference and at the same time
contribute beneficially to the progress of computation.

3.1 Synchronization Issues

We have implemented lightweight spin-wait loops as the
core of our synchronization primitives. They are written
using x86 assembly instructions, and operate entirely at
user space on shared synchronization variables. When such
loops are executed on processors supporting HT technol-
ogy, they can induce additional performance penalty due to

memory order violations and consequent pipeline flushes
caused upon their exit. Furthermore, they consume signif-
icant resources since they spin much faster than the time
needed by the memory bus to perform a single update of
the synchronization variable. These resources could be
otherwise used to make progress on the other logical pro-
cessor. In order to overcome these issues, we have em-
bedded the pause instruction in the spin loop, as recom-
mended by Intel [4]. This instruction introduces a slight de-
lay in the loop and de-pipelines its execution, preventing it
from aggressively consuming valuable processor resources.
These are resources that are shared dynamically between
the two threads on a hyper-threaded processor; execution
units, branch predictors and caches are some examples.

However, some other units, such as micro-ops queues,
load/store queues and re-order buffers were designed to be
statically partitioned, such that each logical processor can
use at most half of their entries. When a thread executes a
pause, it does not releases the entries reserved for it. It
continues to occupy them, while they could be entirely al-
located to the sibling thread to help it execute at a greater
efficiency. By using the privileged halt instruction, a log-
ical processor can relinquish all of its statically partitioned
resources, make them fully available to the other logical
processor, and stop its execution going into a sleeping state.
When it later receives an inter-processor interrupt (IPI) from
the active processor, it resumes its execution and the re-
sources are partitioned again.

The halt instruction is primarily intended for use by
the operating system scheduler. Multithreaded applications
with threads intended to remain idle for a long period, could
take advantage of this instruction to boost their execution.
This was the case for some of the multithreaded codes
we developed throughout our study. We implemented ker-
nel extensions that allow from user space the execution of
halt on a particular logical processor, and the wake-up of
this processor by sending IPIs to it. By integrating these ex-
tensions in the spin-wait loops, we are able to construct long
duration wait loops that do not consume significant proces-
sor resources. Excessive use of these primitives, however,
in conjunction with the resultant multiple transitions into
and out of the halt state of the processor, incur extra over-
head in terms of processor cycles. This is a performance
tradeoff that we took into consideration throughout our ex-
periments. Using the spin-wait loops, we implemented also
barrier synchronization mechanisms with sense-reversing,
as described in [12].

3.2 Implementing speculative precompu-
tation

There are two main issues that must be taken into ac-
count in order to effectively perform software prefetching

using the multiple execution contexts of a hyper-threaded
processor. First of all, the distance at which the precompu-
tation thread runs ahead of the main computation thread,
has to be sufficiently large so that the data is prefetched
into the caches before the computation thread makes use
of it. At the same time it must be kept small enough, so
that cache lines prefetched do not evict useful data in the
cache that have not yet been consumed by the computation
thread. Secondly, we must guarantee that the co-execution
of the precomputation thread does not result in excessive
consumption of shared resources that could be critical for
the sibling computation thread.

The first requirement can be satisfied by imposing a spe-
cific upper bound on the amount of data to be prefetched.
Whenever this upper bound is reached but the computation
thread has not yet started using the prefetched data, the pre-
computation thread must stop its forward progress in order
to prevent potential evictions of useful data from cache. It
can only continue when it is signaled that the computation
thread starts consuming the prefetched data. In our pro-
gram codes, this scenario is implemented using synchro-
nization barriers which enclose program regions (precom-
putation spans) whose memory footprint is equal to the up-
per bound we have imposed. The barriers for the precom-
putation thread are placed at the exit points of the spans,
and at the entry points of the spans for the sibling compu-
tation thread. In this way, precomputation thread always
runs ahead of the sibling thread, maintaining a regulated
distance. In the general case, and considering their rela-
tively lightweight workload, precomputation threads reach
always first the barriers. As a result, computation threads
spend negligible portion of the execution time waiting on
these barriers. In general, the upper bound we enforced in
our codes ranges from 1

A
to 1

2
of the L2 cache size, where

A is the associativity of the cache (8 in our case). The frac-
tion 1

A
is proposed in [14] as a means to eliminate potential

conflict misses.
In order to identify precomputation spans with memory

footprints of a specific size, we followed two different ap-
proaches. For programs with regular or predictable memory
access patterns, spans were identified by simple inspection.
For codes whose access patterns were difficult to determine
a-priori, we had to conduct memory profiling using the Val-
grind simulator[11]. From the profiling results we were
able to determine and isolate the instructions that caused the
majority(92% to 96%) of L2 misses. In either case, precom-
putation threads were constructed manually from the origi-
nal code of the main computation threads, preserving only
the memory loads that triggered the majority of L2 misses;
all other instructions were eliminated.

Despite the lightweight nature of the precomputation
threads, as we mentioned in section 3.1 significant proces-
sor resources can be consumed even when they are simply

spinning on synchronization barriers. In order to avoid such
performance degradation issues, we constructed a version
of synchronization barriers with spin-loops that make use
of the extensions we developed for halting and waking up
the logical processors. When a precomputation thread en-
ters the barrier, it puts its logical processor into halted state
and goes itself into sleeping mode, offering all of its re-
sources for exclusive use by the sibling thread. Similarly,
when the computation thread is going to enter the barrier,
it signals the sleeping thread to wake up. As we have men-
tioned, such transitions are expensive in terms of proces-
sor cycles. For this reason, in our multithreaded programs
we followed a selective approach: we measured the times
that precomputation threads spend on every barrier in the
program; we then identified barriers in which these threads
spin for a considerable portion of their total execution time;
finally, we embedded our mechanisms for processor halting
only in such “long duration” barriers - in the correspond-
ing barriers of the computation threads we incorporated the
counterpart mechanisms for processor wake-up.

4 Quantitative analysis on the TLP and ILP
limits of the processor

In order to gain some notion about the ability and
the limits of hyper-threading technology on interleaving
and executing efficiently instructions from two independent
threads, we have constructed a series of homogeneous in-
struction streams. These streams include basic arithmetic
operations (add,sub,mul,div), as well as memory operations
(load, store), on integer and floating-point 32-bit scalars.
For each of them, we tested different levels of instruction
level parallelism. Each stream is constructed by repeatedly
inlining in our program the corresponding assembly instruc-
tion. All arithmetic operations are register-to-register in-
structions. The memory operations involve data transfers
from memory locations to the processor registers and vice
versa. In this case, each thread operates on a private vector,
whose elements are traversed sequentially.

Let S and T be the sets of architectural registers that
can be used within a window of consecutive instructions
of a particular stream as source and target operands, respec-
tively. In our experiments, we artificially increase(decrease)
the ILP of the stream by keeping S and T always disjoint,
and at the same time expanding(shrinking) T , so that the po-
tential for all kinds of data hazards (i.e. WAW,RAW,WAR)
is delimited(grown). These hazards are responsible for
pipeline stalls. In our tests, we have considered three de-
grees of ILP: minimum (|T |=1), medium (|T |=3), maxi-
mum (|T |=6). To give an example of how we tune ILP in a
stream of an instruction A, in the case of medium ILP, we
repeat A so that exactly three registers are used exclusively
as target registers, and furthermore, a specific target register

is reused every three As.

 0

 1

 2

 3

 4

 5

 6

 7

 8

istoreiloadiaddfadd-mulfmulfadd

Av
er

ag
e

CP
I

Examined instruction stream

1thr-minILP
2thr-minILP

1thr-medILP
2thr-medILP
1thr-maxILP
2thr-maxILP

Figure 1. Average CPI for different TLP and
ILP execution modes of some common in-
struction streams

As a first step, we execute each instruction stream alone
on a single logical processor, for all degrees of ILP. In this
way, all the execution resources of the physical package are
fully available to the thread executing that stream, since the
peer logical processor sits idle. We execute each stream for
about 10 seconds, and for this interval we record the num-
ber of instructions that were executed and the total number
of clock cycles that elapsed. By dividing these two quan-
tities, we obtain an approximation for the CPI of a specific
instruction in the context of a particular ILP level. As a sec-
ond step, we co-execute within the same physical processor
two independent instruction streams of the same ILP, each
of which gets bound to a specific logical processor. We ex-
periment with all possible combinations of the available in-
structions streams. For each combination, we perform as
before a similar measurement for the CPI, and we compute
then the factor by which the execution of a specific instruc-
tion was slowed down compared to its standalone execution.
This factor gives us an indication on how various kinds of
simultaneously executing streams of a specific ILP level,
contend with each other for shared resources.

There is some additional information that we extract
from the above experiments. For a particular instruction
stream, we can estimate whether the transition from single-
threaded mode of a specific ILP level to dual-threaded mode
of a lower ILP level, can hinder or boost performance. For
example, let’s consider a scenario where, in single-threaded
and maximum ILP mode, instruction A gives an average
CPI of C1thr−maxILP , while in dual-threaded and medium
ILP mode the same instruction gives an average CPI of
C2thr−medILP > 2 × C1thr−maxILP . Because the sec-
ond case involves half of the ILP of the first case, the above
scenario prompts that we must probably not anticipate any

speedup by parallelizing into multiple threads a program
that uses extensively this instruction in the context of high
ILP (e.g. unrolling).

4.1 Co-executing streams of the same
type

Figure 1 provides results regarding the average CPI for
a number of synthetic streams. It demonstrates how the
different combinations of TLP and ILP modes for a given
stream can affect its execution time. The streams presented
in the diagram are some of the most common instruction
streams we encountered in real programs. Let’s consider the
fadd instruction stream. In the case of minimum ILP, the
cycles of the instruction do not alter when moving from 1 to
2 threads, which results practically in overall speedup. This
reveals that the benefit from the strength of the processor
to interleave instructions from the two threads, overlaps the
cost of pipeline stalls due to the frequent data hazards from
both threads. However, this scenario does not yield the best
performance. The best instruction throughput is obtained
in the single-threaded mode of maximum ILP, as depicted
in the same diagram. The measurements show indirectly
that an instruction window Wfadd6 of 6 consecutive inde-
pendent fp-add’s executed by a single thread (1thr-maxILP
case) can complete in less time than splitting the window in
two and assigning each half to two different threads (2thr-
medILP case). Furthermore, as implied by the results for
the 2thr-maxILP case, even if we distribute evenly a bunch
of Wfadd6 windows to two threads for execution, there is no
performance gain compared to assigning all of them only to
one thread (1thr-maxILP case, again). It seems that, when
the available ILP increases in a program, pipeline stall prob-
lems diminish, leaving space for resource contention issues
to arise and affect performance negatively.

As Figure 1 shows, fmul stream exhibits a similar vari-
ation in its CPI. It is interesting to see that mixing in a cir-
cular fashion in the same thread fp-add and fp-mul instruc-
tions, results in a stream (fadd − mul) whose final behav-
ior is averaged over those of its constituent streams. For
other instruction streams, such as iadd, it is not clear which
mode of execution gives the best execution times, since the
throughput remains the same in all cases. Hyper-threading
achieved to favor TLP over ILP only for iload, because the
cumulative throughput in all dual-threaded cases is larger
compared to the single-threaded cases.

4.2 Co-executing streams of different
types

Figures 2(a) and 2(b) present the results from the co-
execution of different pairs of streams (for the sake of com-
pleteness, results from the co-execution of a given stream

with itself, are also presented). We examine pairs whose
streams have the same ILP level, because we believe that
this is the common case in most parallel applications. The
slowdown factor represents the ratio of the CPI when two
threads are running concurrently, to the CPI when the
benchmark indicated on the top x-axis is being executed in
single-threaded mode. What is clear at first glance, is that
the throughput of integer streams is not affected by varia-
tions of ILP, as happens in the case of floating point streams.

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

fs
to

re
flo

adfd
iv

fm
ul

fa
dd

/fs
ub

fs
to

re
flo

adfd
iv

fm
ul

fa
dd

/fs
ub

fs
to

re
flo

adfd
iv

fm
ul

fa
dd

/fs
ub

fs
to

re
flo

adfd
iv

fm
ul

fa
dd

/fs
ub

fs
to

re
flo

adfd
iv

fm
ul

fa
dd

/fs
ub

fstorefloadfdivfmulfadd/fsub

Sl
ow

do
wn

 fa
ct

or
 o

f
ex

am
in

ed
 in

st
r.

st
re

am

Co-executed instruction streams

Examined instruction stream

max ILP
med ILP
min ILP

(a) floating-point streams

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

ist
or

e
ilo

adid
iv

im
ul

ia
dd

/is
ub

ist
or

e
ilo

adid
iv

im
ul

ia
dd

/is
ub

ist
or

e
ilo

adid
iv

im
ul

ia
dd

/is
ub

ist
or

e
ilo

adid
iv

im
ul

ia
dd

/is
ub

ist
or

e
ilo

adid
iv

im
ul

ia
dd

/is
ub

istoreiloadidivimuliadd/isub

Sl
ow

do
wn

 fa
ct

or
 o

f
ex

am
in

ed
 in

st
r.

st
re

am

Co-executed instruction streams

Examined instruction stream

max ILP
med ILP
min ILP

(b) integer streams

 1

 1.5

 2

 2.5

 3

fd
iv

fm
ul

fa
dd

/fs
ubfd
iv

fm
ul

fa
dd

/fs
ubfd
iv

fm
ul

fa
dd

/fs
ubid
iv

im
ul

ia
dd

/is
ubid
iv

im
ul

ia
dd

/is
ubid
iv

im
ul

ia
dd

/is
ub

idivimuliadd/isubfdivfmulfadd/fsub

Sl
ow

do
wn

 fa
ct

or
 o

f
ex

am
in

ed
 in

st
r.

st
re

am

Co-executed instruction streams

Examined instruction stream

max ILP
med ILP
min ILP

(c) floating-point with integer streams

Figure 2. Slowdown factors from the co-
execution of various instruction streams

The execution of fdiv is mostly affected by streams of
the same type (slowdown 120% − 140%), but remains un-
affected from variations of ILP. fmul also experiences its
major slowdown when co-executed with itself. fadd/fsub
streams, on the other hand, are affected by streams of the
same type (slowdown up to 100%), as well as streams of dif-
ferent fp operations (e.g. slowdown of 180% with fmul).
In lowest ILP mode, all different pairs of fadd, fmul and
fdiv streams, can co-exist perfectly (except for the case of
fdiv-fdiv). fload or fstore instructions (with a miss rate
of 3%) can slowdown floating-point arithmetic operations
by about 40%.

When both threads execute iadd/isub, a 100% slow-
down arises, which is equivalent to serial execution. Other
types of arithmetic or memory operations affect iadd/isub
less, by a factor of 10% − 45%. imul and idiv instruc-
tion streams are almost unaffected by co-existing threads.
iadd/isub induce a slowdown of about 115% and 320% to
iload and istore instruction streams, respectively (with 3%

miss rate).
Finally, we mixed integer and floating-point instruc-

tion streams. Such mixes are more frequent in multipro-
grammed workloads, rather than multithreaded scientific
codes. The results are depicted in Figure 2(c), and regard
pairs of floating-point and integer arithmetic streams of the
same ILP. Due to space limitations, a more detailed discus-
sion on these results is omitted.

5 Experimental Framework and Results

We experimented on Intel Xeon processor enabled with
HT technology, running at 2.8GHz. This processor is based
on Netburst microarchitecture, characterized by the deep
pipeline and out-of-order execution capabilities. The core
can retrieve three microoperations (µops) per cycle from
the trace cache, execute up to six per cycle and graduate
up to three per cycle. HT technology makes a single physi-
cal processor appear as two logical processors by applying
a two-threaded SMT approach. The OS identifies two dif-
ferent logical processors, each maintaining a separate run
queue.

It is worth noting that with the introduction of HT tech-
nology on Intel processors, the performance monitoring ca-
pabilities were extended, so that the performance counters
could be programmed to select events that are qualified by
logical processor IDs, whenever that was possible. To use
these performance monitoring capabilities, a simple custom
library was developed. For each of the multithreaded execu-
tion modes presented in section 3 we present measurements
taken for three events:

• L2 Misses: The number of 2nd level read misses as
seen by the bus unit. For the TLP methods, including the
prefetch hybrid method the L2 misses presented are the

sum of the misses for both threads. For the pure software
prefetch method, only the misses of the working thread are
presented.

• Resource stall cycles: The number of clock cycles
that a thread stalls in the processor allocator, waiting until
store buffer entries are available. This performance metric
is indicative of the contention that exists between hardware
threads. For all cases, the results presented correspond to
the sum of stall cycles on behalf of both logical processors.

• µops retired: The number of µops that were retired
during the execution of the program. For all cases the µops
number is the number of those retired for both threads.

Both in TLP and SPR versions of our codes, we create
two threads each of one we bind to a specific logical pro-
cessor within a single physical package. We have used the
NPTL library for the creation and manipulation of threads.
Our operating system was Linux version 2.6.9. To force
the threads to be scheduled on a particular processor, we
have used the sched setaffinity system call. All
user codes were compiled with gcc 3.3.5 compiler using the
O2 optimization level, and linked against glibc 2.3.2.

5.1 Microkernels

This section presents the experimental results using two
popular computational kernels, Matrix Multiplication and
LU decomposition. Experiments were conducted for three
matrix sizes: 1024 × 1024, 2048 × 2048 and 4096 × 4096.

i) Matrix Multiplication: We developed a number of
tiled multithreaded versions, where blocked array layouts
were applied. We implemented two schemes: work parti-
tioning (TLP) and SPR.

The work partitioning schemes divide the total amount of
work into equal parts, each of which gets assigned statically
to a specific thread. In our case, each thread takes over dif-
ferent parts of matrix C to compute. We further developed
two versions of such schemes, a fine-grained and a coarse-
grained one. In the fine-grained version (tlp-fine), consec-
utive elements within a single tile of C are assigned to dif-
ferent threads in a circular fashion. Due to blocked array
layouts, these elements are stored in contiguous memory
locations, so that traversed elements are mapped in nearby
but not identical cache locations. We have chosen tile sizes
that completely fit in L1 cache, as they had the best perfor-
mance, in terms of execution time. In the coarse-grained
version (tlp-coarse), consecutive tiles of C are assigned to
different threads circularly. This way, the two threads work
on different cache areas, without interfering in one’s another
cache lines.

The SPR techniques use prefetching to tolerate cache
misses, following the scheme we described in section 3.2.
In the pure prefetching version (tlp-pfetch), the whole
workload is executed by just one thread, while the second

 1

 10

 100

 1000

409620481024
Matrix Dimension (elements)

serial
tlp-coarse
tlp-fine
tlp-pfetch
tlp-pfetch+work

(a) Execution Time (sec)

 10000

 100000

 1e+06

 1e+07

 1e+08

409620481024
Matrix dimension (elements)

serial
tlp-coarse
tlp-fine
tlp-pfetch
tlp-pfetch+work

(b) L2 misses

 100000

 1e+06

 1e+07

 1e+08

409620481024
Matrix dimension (elements)

serial
tlp-coarse
tlp-fine
tlp-pfetch
tlp-pfetch+work

(c) Resource stall cycles

 1e+10

 1e+11

 1e+12

409620481024
Matrix dimension (elements)

serial
tlp-coarse
tlp-fine
tlp-pfetch
tlp-pfetch+work

(d) µops retired

Figure 3. Results for the Matrix Multiplication
kernel

just prefetches the next tile in issue. In the hybrid prefetch-
ing version (tlp-pfetch+work), the workload is partitioned
in a fine-grained fashion, while one of the two threads takes
on the prefetching of the next tile in issue.

Figure 3 presents the above 4 versions of the matrix mul-
tiplication benchmark, as well as the serial version (serial),
optimized with all possible loop transformation techniques,
including loop unrolling. As illustrated in Figure 3(a), HT
technology did not provide any speedup. The fastest dual-
threaded method was the pure prefetch method, which had
almost identical performance with the serial method, for all
matrix sizes. Figure 3(b) shows that for the working thread,
it can be achieved a great improvement in the number of
L2 misses (around 82% less) when using a different thread
as a prefetcher. However, this is not followed by overall
speedup, due to the ineffective static resource partitioning
in the processor (see section 5.3), which results in resource
contention (Figure 3(c)). The other methods are also out-
performed by the serial method. The tlp-coarse method is
slower by a factor of 1.12, the tlp-fine by a factor of 1.34
and the tlp-pfetch+work method by a factor of 1.58 on all
matrix sizes. In this case, also, execution time slowdown is
consistent with the increase of stall cycles.

ii) LU decomposition: In the work partitioning imple-
mentation, the original LU kernel was parallelized by as-
signing different tiles to different threads for in-tile factor-
ization (tlp-coarse). This is a coarse-grained scheme. It
consists of three computation phases, which are determined
by the inter-tile data dependences of the algorithm.

The SPR technique was implemented by means of a pure
prefetching scheme (tlp-pfetch), where the prefetcher thread

 1

 10

 100

 1000

409620481024
Matrix Dimension (elements)

serial
tlp-coarse
tlp-pfetch

(a) Execution Time (sec)

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

409620481024
Matrix dimension (elements)

serial
tlp-coarse
tlp-pfetch

(b) L2 misses

 1e+08

 1e+09

 1e+10

 1e+11

409620481024
Matrix dimension (elements)

serial
tlp-coarse
tlp-pfetch

(c) Resource stall cycles

 1e+09

 1e+10

 1e+11

 1e+12

409620481024
Matrix dimension (elements)

serial
tlp-coarse
tlp-pfetch

(d) µops retired

Figure 4. Results for the LU decomposition
kernel

fills part of the L1 cache with the next tile to be factorized by
the main worker thread. A hybrid precomputation scheme
was not implemented for this kernel, since it would require
a more fine-grained work partitioning strategy.

As Figure 4(a) depicts, the tlp-coarse method proved to
be the fastest by offering a slight speedup in the range of
0.5%− 8.9%. It is noteworthy that, despite the fact that the
threads work on disjoint data, they contribute mutually to a
reduction of the total L2 misses compared to the serial case.
The relatively small tile size explains somehow this behav-
ior, since the access of boundary tile elements by one thread
seems to trigger more often the prefetch of cache lines
which contain elements of neighbouring tiles. Despite the
speedup gained in the tlp-coarse version, stall cycles grow
up to one or even two orders of magnitude. Stalling one of
the two threads in the allocator seems to leave enough room
in the execution subunits for the other thread to perform
better. As in the MM kernel, the L2 misses of the worker
thread were also decreased significantly (around 98%) us-
ing a second prefetcher thread. However, given that the
dual-threaded prefetch method needs more than double the
amount of µops to complete compared to the serial method,
as Figure 4(d) designates, it is expected that the program
will not be able to benefit from the better memory local-
ity.For this method, and for increasing matrix dimension,
there was a slowdown by a factor from 1.61 to 1.96.

5.2 NAS benchmarks

In this section, the experimental results using CG and BT
benchmarks from NPB suite version 2.3 are presented. CG

solves an unstructured sparse linear system by the conjugate
gradient method. The benchmark is characterized by ran-
dom memory access patterns. BT solves block-tridiagonal
systems of 5× 5 blocks using the finite differences method,
and exhibits somewhat better data locality. The perfor-
mance of both benchmarks was evaluated for Class A data
sizes. The implementations of the benchmarks were based
on the OpenMP C versions of NPB 2.3 provided by the
Omni OpenMP Compiler Project [1]. We transformed these
versions so that appropriate threading functions are used
for work decomposition and synchronization, instead of
OpenMP constructs.

 1

 10

 100

BTCG
NAS Benchmark

serial
tlp-coarse
tlp-pfetch
tlp-pfetch+work

(a) Execution Time (sec)

 1e+06

 1e+07

 1e+08

 1e+09

BTCG
NAS Benchmark

serial
tlp-coarse
tlp-pfetch
tlp-pfetch+work

(b) L2 misses

 1e+08

 1e+09

 1e+10

 1e+11

BTCG
NAS Benchmark

serial
tlp-coarse
tlp-pfetch
tlp-pfetch+work

(c) Resource stall cycles

 1e+10

 1e+11

BTCG
NAS Behnchmark

serial
tlp-coarse
tlp-pfetch
tlp-pfetch+work

(d) µops retired

Figure 5. Results for CG and BT NAS bench-
marks

i) CG: In this case, also, the single-threaded version out-
performs all other dual-threaded methods which use the HT
technology of the Xeon processor(Figure 5(a)).

The tlp-coarse method is slower only by a factor of
1.03, when compared to the single-threaded approach. The
methods which implement software prefetching are outper-
formed by a factor 1.82 for the pure method and 1.91 for
the hybrid method. In Figure 5(b) we can see that both the
tlp-coarse and tlp-pfetch methods have better locality than
the serial method. Also in Figure 5(d) it is evident that the
great performance decrease in the prefetch method is due to
the increase in the total number of µops for the program. On
the other hand, the increase of total µops for the tlp-coarse
method is rather small and so is the effect in the total exe-
cution time. Figure 5(c) shows that there is no significant
variation in the number of stall cycles, indicating that con-
tention in the store buffers is not the reason for performance
slowdown.

ii) BT: For this benchmark, we were able to achieve a

performance gain by exploiting the HT technology (Figure
5(a)). There was a relative performance gain by a 1.06 fac-
tor using the tlp-coarse method and a relative performance
loss of a 1.01 factor when using the tlp-pfetch method. Al-
though, again, tlp-pfetch was able to significantly decrease
the L2 misses of the worker thread (Figure 5(b)), there was
not observed any performance gain because of the increased
µops required to implement the prefetching. On the con-
trary, in the case of tlp-coarse there was a drop in L2 misses
and the µops remained the same, which lead to better per-
formance. Stall cycles (similarly to LU case) increase con-
siderably, too.

5.3 Further Analysis

Table 1 presents the utilization of the busiest proces-
sor execution subunits, when running the reference applica-
tions. The first column (serial) contains results of the single-
threaded versions. The second column (tlp) presents the be-
havior of one of two threads for the TLP implementation. In
this case, each of the two threads execute an almost equiv-
alent load (at about a half of the total instructions of the
serial case, if we ignore the extra parallelization overhead),
and consequently, results are identical. The third column
(spr) presents statistics of the prefetching thread in the SPR
versions of our codes. All percentages in the table refer to
the portion of the total instructions of each thread that used a
specific subunit of the processor. The statistics were gener-
ated by profiling the original application executables using
the Pin binary instrumentation tool [7], and analyzing for
each case the breakdown of the dynamic instruction mix, as
recorded by the tool. Figure 6([4]) presents the main execu-
tion units of the processor, together with the issue ports that
drive instructions into them. Our analysis examines the ma-
jor bottlenecks that prevent multithreaded implementations
from achieving some speedup.

Compared to the serial versions, TLP implementations
do not generally change the mix for various instructions.
Of course, this is not the case for SPR implementations.
For the prefetcher thread, not only the dynamic mix, but
also the total instruction count, cannot be compared with
those of the worker thread. Additionally, different memory
access patterns require incomparable effort for address cal-
culations and data prefetching, and subsequently, different
number of instructions.

In the MM benchmark the most specific characteristic
is the large number of logical instructions used: at about
25% of total instructions in both the serial and the TLP ver-
sions. This is due to the implementation of Blocked Ar-
ray Layouts with binary masks [2] that were employed for
this benchmark. Although the out-of-order core of the Xeon
processor possesses two ALU units (double speed), among
them only ALU0 can handle logical operations. As a result,

������� ���	�

����� �

��� ��� ������� �
��� �����������

���! "��#��
��$�%'&

���!��� �(� �)����� �
���	��� �	�	� ���(� * �

+���� ��� �

����,������
����,�-.�	

����,/�	0 1
2 2 2

��������
��� ��* ��� ��� ��� ��� �)�(���(� ��� �

3'4�5�687 9�:�; <�=(>@?'A'B�C 3�4�5"D'7 9(:�; E F@G�C�H)C�I <(=JC�9�K�L�M�N K ?'C	?@>�4(A�3'O ?'C	?@>�P/G�A'I�C

=�Q�R N�6 =�Q/R N@D =�Q�R N�: =�Q�R N/S

Figure 6. Instruction issue ports and main execution units of the Xeon processor

Instrumented thread
EX. UNIT serial tlp spr

MM

ALUs:
FP ADD:
FP MUL:

LOAD:
STORE:

27.06%
11.70%
11.70%
38.76%
12.07%

26.26%
11.82%
11.82%
27.00%
12.02%

37.56%
0.00%
4.13%

58.30%
20.75%

Total instr.(×109): 4.60 2.27 0.20

LU

ALUs:
FP ADD:
FP MUL:

LOAD:
STORE:

38.84%
11.15%
11.15%
49.24%
11.24%

38.84%
11.15%
11.15%
49.24%
11.24%

38.16%
0.00%
0.00%

38.40%
22.78%

Total instr. (×109): 3.21 1.62 3.26

CG

ALUs:
FP ADD:
FP MUL:

FP MOVE:
LOAD:

STORE:

28.04%
8.83%
8.86%

17.05%
36.51%

9.50%

23.95%
7.49%
7.53%

14.05%
45.71%
8.51%

49.93%
0.00%
0.00%
0.00%

19.09%
9.54%

Total instr.(×109): 11.93 7.07 0.17

BT

ALUs:
FP ADD:
FP MUL:

FP MOVE:
LOAD:

STORE:

8.06%
17.67%
22.04%
10.51%
42.70%
16.01%

8.06%
17.67%
22.04%
10.51%
42.70%
16.01%

12.06%
0.00%
0.00%
0.00%

44.70%
42.94%

Total instr. (×109): 44.97 22.49 8.40

Table 1. Processor subunits utilization from
the viewpoint of a specific thread

concurrent requests for this unit in the TLP case, will lead
to serialization of corresponding instructions, without offer-
ing any speedup. In the SPR version, ALU0 utilization on
behalf of prefetcher thread is significant, as well. But in this
case, the contention, and consequently the slowdown, is not
as high as in TLP case, since the prefetcher executes only a
small fraction of the worker’s total instructions.

With respect to MM, LU exhibits higher ALUs usage.
In this case, however, instructions can be executed by both
ALUs and thus are distributed equally on them. Further-
more, as we can see from Figure 1, raw fadd−mul streams
can interact without incurring slowdowns. These observa-
tions, in conjunction with the fact that each thread in the

TLP case executes almost half the instructions of the serial
version, explain in a way the marginal speedup achieved.
On the contrary, in the SPR case, the prefetcher executes
at least the same number of instructions as the worker, and
also puts the same pressure on ALUs. This is due to the
non-optimal data locality, which leads prefetcher to execute
a large number of instructions to compute the addresses of
data to be brought in cache. These facts translate into major
slowdowns for the SPR version of LU, despite any signifi-
cant L2 misses reduction.

In CG benchmark, the utilization percentages of each
thread in TLP version are not indicative of performance
degradation. As Figure 5(a) demonstrates, though, there is
a minor slowdown. This is because each thread executes
more than the half of the instructions compared to the se-
rial case, due to parallelization overhead. A noteworthy re-
mark regards the SPR implementation of CG: although the
prefetcher executes a small number of instructions, execu-
tion time is decelerated significantly. We believe that the
frequent invocations of synchronization primitives in this
benchmark (not included in the profiling process) are re-
sponsible for this behavior.

As can be seen in Figure 5(a), TLP mode of BT bench-
mark was one of few cases that gave us some speedup
(around 6%). The relatively low usage and thus contention
on ALUs, in conjunction with non-harmful co-existence of
fadd−mul streams (which dominated, again, other instruc-
tions) and the perfect workload partitioning, are among the
main reasons for this speedup. Following a similar ratio-
nale, low ALUs utilization together with small number of
total instructions, led to minimal performance drop (about
1%) when the SPR scheme was applied.

6 Conclusions

This paper presents performance results for a simulta-
neous multithreaded architecture, the hyper-threaded Intel
microarchitecture. We examined single-programmed work-
loads, where both work partitioning schemes to exploit TLP,
and SPR techniques, were applied. Our evaluation was
based on actual program execution, as well as simulation.
The results gathered demonstrated the limits in achieving

high performance for multi-threaded applications.
SPR can achieve a fairly good reduction in L2 cache

misses. However, in order to fine tune data prefetching,
a considerable number of additional instructions have to
be inserted into the pipeline. This increase in the num-
ber of µops, in combination with some kind of resource
contention, harms performance in terms of execution time.
Besides, optimized applications with a relatively high IPC
(such as the tested microkernels), are really difficult to
achieve even better performance without reducing the µops
executed. Thus, embodying SPR in the working thread,
seems to be the solution that combines low number of µops
with reduced cache misses and achieves best performance.

Coarse-grained work partitioning does not have a signifi-
cant impact on the number of µops executed (usually brings
a slight increase). Total execution performance would be
expected to be improved, especially in cases of L2 cache
miss decrease. However, the two working threads, due
to their symmetric profiles, compete for the same hard-
ware resources. This contention constitutes a bottleneck
to high performance. A noteworthy performance speedup
was achieved only for one of the NAS benchmarks (BT). In
this case, irregular memory access patterns (which impose a
significant latency), in combination with assorted compute
instructions (which do not put pressure on just one type of
hardware resources), hide memory latency by interleaving
it with computation and minimize overhead due to resource
contention.

References

[1] Omni OpenMP Compiler Project. Released in the In-
ternational Conference for High Performance Com-
puting, Networking and Storage (SC’03), Nov 2003.

[2] E. Athanasaki and N. Koziris. Fast Indexing for
Blocked Array Layouts to Improve Multi-Level Cache
Locality. In Proc. of INTERACT’04, Madrid, Spain.

[3] J. D. Collins, H. Wang, D. Tullsen, C. Hughes, Y-F.
Lee, D. Lavery, and J. P. Shen. Speculative Precompu-
tation: Long-Range Prefetching of Delinquent Loads.
In Proc. of ISCA ’01, Göteborg, Sweden.

[4] Intel Corporation. IA-32 Intel Architecture Optimiza-
tion. Order Number: 248966-011.

[5] D. Kim, S-W. Liao, P. H. Wang, J. Cuvillo, X. Tian,
X. Zou, H. Wang, D. Yeung, M. Girkar, and J.
P. Shen. Physical experimentation with prefetching
helper threads on intel’s hyper-threaded processors. In
Proc. of IEEE/ACM CGO 2004, San Jose, CA.

[6] C-K. Luk. Tolerating Memory Latency through
Software-Controlled Pre-Execution in Simultaneous

Multithreading Processors. In Proc. of ISCA ’01,
Göteborg, Sweden.

[7] C-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and K. Hazel-
wood. Pin: Building Customized Program Analysis
Tools with Dynamic Instrumentation. SIGPLAN Not.,
40(6):190–200, 2005.

[8] C-K. Luk and T. Mowry. Compiler-Based Prefetching
for Recursive Data Structures. In Proc. of ASPLOS-
VII, Boston, MA.

[9] D. T. Marr, F. B. Desktop, D. L. Hill, G. Hinton, D. A.
Koufaty, J. A. Miller, and M. Upton. Hyper-Threading
Technology Architecture and Microarchitecture. Intel
Technology Journal, Feb 2002.

[10] T. Mowry and A. Gupta. Tolerating Latency Through
Software-Controlled Prefetching in Shared-Memory
Multiprocessors. Journal of Parallel and Distributed
Computing, 12(2):87–106, June 1991.

[11] N. Nethercote and J. Seward. Valgrind: A Program
Supervision Framework. In Proc. of RV’03, Boulder,
CO.

[12] D. Patterson and J. Hennessy. Computer Architecture.
A Quantitative Approach, chapter 6.7. pages 597–598.
Morgan Kaufmann, 3rd edition, 2003.

[13] A. Roth and G. Sohi. Speculative Data-Driven Multi-
threading. In Proc. of HPCA ’01, Nuevo Leone, Mex-
ico.

[14] F. Blagojevic T. Wang and D. S. Nikolopoulos.
Runtime Support for Integrating Precomputation and
Thread-Level Parallelism on Simultaneous Multi-
threaded Processors. In Proc. of LCR’2004, Houston,
TX.

[15] N. Tuck and D. Tullsen. Initial Observations of the
Simultaneous Multithreading Pentium 4 Processor. In
Proc. of PACT ’03, New Orleans, LA.

[16] D. Tullsen, S. Eggers, J. Emer, H. Levy, J. Lo, and
R. Stamm. Exploiting Choice: Instruction Fetch and
Issue on an Implementable Simultaneous Multithread-
ing Processor. In Proc. of ISCA ’96, Philadelphia, PA.

[17] D. Tullsen, S. Eggers, and H. Levy. Simultaneous
Multithreading: Maximizing On-Chip Parallelism. In
Proc. of ISCA ’95, Santa Margherita Ligure, Italy.

[18] H. Wang, P. Wang, R. D. Weldon, S. M. Ettinger, H.
Saito, M. Girkar, S. S-W. Liao, and J. P. Shen. Spec-
ulative Precomputation: Exploring the Use of Mul-
tithreading for Latency. Intel Technology Journal,
6(1):22–35, Feb 2002.

