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Abstract

This paper proposes a novel approach for the parallel
execution of tiled Iteration Spaces onto a cluster of SMP
PC nodes. Each SMP node has multiple CPUs and a sin-
gle memory mapped PCI-SCI Network Interface Card. We
apply a hyperplane-based grouping transformation to the
tiled space, so as to group together independent neighbor-
ing tiles and assign them to the same SMP node. In this
way, intranode (intragroup) communication is annihilated.
Groups are atomically executed inside each node. Nodes
exchange data between successive group computations. We
schedule groups much more efficiently by exploiting the
inherent overlapping between communication and compu-
tation phases among successive atomic group executions.
The applied non-blocking schedule resembles a pipelined
datapath where group computation phases are overlapped
with communication ones, instead of being interleaved with
them. Our experimental results illustrate that the proposed
method outperforms previous approaches involving block-
ing communication or conventional grouping schemes.

1 Introduction

One of the most difficult areas in the field of paral-
lel computing is loop parallelization and efficient mapping
onto different parallel architectures. In order to achieve
maximum acceleration of the final program, one of the
key issues that should be taken into account is minimiza-
tion of the communication overhead, which considerably
decelerates the system. As far as fine grain parallelism
is concerned, in order to reduce the communication over-
head, several methods have been proposed to group together
neighboring chains iterations [10, 7], while preserving the
optimal hyperplane schedule [13, 11, 3]. As far as coarse
grain parallelism is concerned, researchers are dealing with

the problem of alleviating the communication overhead by
applying the supernode or tiling transformation. Supernode
partitioning of the iteration space was proposed by Irigoin
and Triolet in [6]. They introduced the initial model of loop
tiling and gave conditions for a tiling transformation to be
valid. Later, Ramanujam and Sadayappan in [9] showed
the equivalence between the problem of finding a set of ex-
treme vectors for a given set of dependence vectors and the
problem of finding a tiling transformation H that produce
valid, deadlock-free tiles. The problem of determining the
optimal shape was surveyed, and more accurate conditions
were also given by others as Xue in [14] and Boulet et al. in
[2].

Nevertheless, all above approaches ignore the actual iter-
ation space boundaries. Although tile shape is of great im-
portance to communication reduction, the objective should
be the overall tiled space completion time. Hodzic and
Shang [5] proposed a method to correlate optimal tile size
and shape, based on overall completion time reduction.
Their approach considers a straightforward time schedule
where each processor executes all tiles along a specific di-
mension, by interleaving computation and communication
phases. All processors first receive data, then compute and
finally send result data to neighbors in explicitly distinct
phases, according to the hyperplane scheduling vector.

In [4] we proposed an alternative method for the problem
of scheduling the tiles to single CPU nodes. Each atomic
tile execution involves a communication and a computation
phase and this is repeatedly done for all time planes. We
are compacting this sequence of communication and com-
putation phases, by overlapping them for the different pro-
cessors. The proposed method acts like enhancing the per-
formance of a processor’s datapath with pipelining [8], be-
cause a processor computes its tile at � time step and con-
currently receives data from all neighbors to use them at
�� � time step and sends data produced at � � � time step.
Since data communication involves some startup latencies,



we adjust the computation grain to make room for this over-
head and try to overlap with all communication, which can
be done in parallel. Previous work in the field of UET-UCT
scheduling of grid graphs in [1], has shown that this sched-
ule is optimal when the computation to communication ratio
is one.

In this paper we extend the method proposed in [4] for
executing tiled iteration spaces in SMP nodes. We group
together neighboring tiles along a hyperplane. Hyperplane-
grouped tiles are concurrently executed by the CPUs of the
same SMP node. In this way, we eliminate the need for
tile synchronization and communication between intranode
CPUs. As far as scheduling of groups is concerned, we
take advantage of the overlapping schedule of [4] in order
to “hide” each group communication volume within the re-
spective computation volume. Under the above implemen-
tation scheme, the iteration space involves the overlapped
execution of communication and computation phases be-
tween successive groups of tiles. We thus avoid most of
the communication overhead by allowing for actual compu-
tation to communication overlapping.

We compare our method, using blocking schedules and
vertical grouping of neighboring tiles along a specific di-
mension. Vertically grouped tiles are assigned to the same
node, and an optimal hyperplane time schedule is applied.
However, this imposes additional intranode synchronization
delays. All experimental results show that when the hyper-
plane grouping of tiles together with the overlapping sched-
ule are applied, the overall completion time is considerably
reduced, under the condition of controlling the computation
to communication grain.

The rest of this paper is organized as follows: Basic ter-
minology used throughout the paper and definitions of loop
tiling are introduced in Section 2. In Section 3 we supply
an algorithm for the application of the overlapping scheme
(proposed in [4]) on clusters of SMP nodes and we investi-
gate the resulting time schedule. In Section 4 we describe
the experiments executed on a cluster of SMPs using PCI-
SCI Network Interface cards in order to verify our theory.
Finally, in Section 5 we summarize our results and propose
future work.

2 Models – Loop Tiling

In this paper we consider algorithms with perfectly
nested FOR-loops and uniform data dependencies, as in [4].
Throughout the paper the following notation is used: � is
the set of natural numbers and � is the number of nested
FOR-loops of the algorithm. � � � �� is the set of indices:
�� � ������ ���� ������ � � � 	� � �� � 
�� � � � � ��.
Each point in this �-dimensional integer space is a distinct
instantiation of the loop body. A dependence vector is de-
noted �� � ����� ���� ����� � � � � . The dependence set�

of an algorithm is the set of all dependence vectors of this
algorithm: � � ���� ��� ���� ���.

In a supernode or tiling transformation the Iteration
space �� is partitioned into identical �-dimensional paral-
lelepiped areas (tiles or supernodes) formed by � indepen-
dent families of parallel hyperplanes. Tiling transformation
is defined by the �-dimensional square matrix� . Each row
vector of � is perpendicular to one family of hyperplanes
forming the tiles. Dually, tiling transformation can be de-
fined by � linearly independent vectors, which are the sides
of the tiles. Similar to matrix � , matrix � contains the
side-vectors of a tile as column vectors. It holds � � ���.

Formally, tiling transformation is defined as follows:

� � �� �� ���� ���� �

�
����

� ��������

�
�

where 	��
 identifies the coordinates of the tile that index
point ����� ��� � � � � ��� is mapped to and �����	��
 gives
the coordinates of � within that tile relative to the tile ori-
gin. The Tile space �� and the Tile Dependence matrix��

are defined as follows: �� � ��� ��� � 	��
� � � ���,
�� � ��� ��� � 	���� � ��
� � � �� �� � ���� �
	���
 � �� where �� denotes the index points belonging
to the first complete tile starting from the origin of the Iter-
ation space ��. The Tile space can be also written as �� �
������� � � � � � ��� ����� � � � 	�� � ��� � 
�� � � � � � ��.
Each point �� in this �-dimensional integer space � � is a
distinct tile with coordinates ���� � �

�
� � � � � � �

�
� �.

Given an algorithm with dependence matrix �, for a
tiling to be legal, it must hold �� � � (see [6, 9]). In this
paper, as in [4], we assume that all dependence vectors are
smaller than the tile size, thus they are entirely contained in
each tile’s area, which means that ���� � � [15], or, alter-
natively, that the tile dependence matrix �� contains only
0’s and 1’s.

3 Application of the overlapping schedule to
SMP nodes

In the rest of this paper, we shall consider that the
non-overlapping and overlapping schedules, extensively de-
scribed in [4] (sections 3,4), are known. In the sequel
we shall generalize the proposed overlapping schedule and
apply it on a cluster of Symmetric Multiprocessors (SMP
nodes).

Let us consider the following scenario: A �-dimensional
nested loop to be executed onto a cluster of � single CPU
nodes. We tile the Iteration Space of the algorithm and as-
sign each row of tiles to a CPU node. Apparently, we should
select the size and shape of tiles so that the Iteration Space is
partitioned into � rows of tiles (since �CPU’s are available).
Then the tiles can be computed using either the overlapping
or the non-overlapping schedule presented in [4].

If, instead of � single CPU nodes, we have � SMP nodes,
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Figure 1. Vertical grouping

with � CPU’s each, then we can split each tile into two sub-
tiles and assign each subtile to one of the CPU’s of the cor-
responding SMP node, as indicated in Fig. 1. Equivalently,
we may tile the initial Iteration Space, selecting the size
of tiles so as to get six rows of tiles. Then we assign a
row of tiles to each CPU of the SMP nodes and group to-
gether neighboring tiles assigned to the same SMP node, as
in Fig. 1. It is obvious that the tiles grouped together by this
scheme cannot be simultaneously executed, unless they are
split into subtiles. Thus, additional synchronization over-
head is imposed due to subtile dependencies.
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Figure 2. Hyperplane grouping

A more efficient scheme can be obtained if we group
the tiles assigned to the same SMP nodes as indicated in
Fig. 2. Then both tiles belonging to the same group can be
simultaneously executed by the CPU’s of an SMP node. We
shall call this grouping scheme as “hyperplane grouping”.
On the contrary, any other grouping scheme along a specific
dimension, such as the one presented in Fig. 1, will be called
“vertical grouping”.

3.1 Grouping Transformation

In order to generate an appropriate time schedule, we
need to group together the tiles of � � that will be concur-
rently executed by the CPU’s of the same SMP node. We

further apply an additional supernode transformation to the
Tile Space �� . Thus from the Tile Space � � we produce
the Group Space �� � ������ � 	����
� �� � ����
This grouping transformation is defined by the � � � non-
singular matrix ��. In correspondence to the tiling matrix
� , we call the � � � matrix �� as grouping matrix. The
� � � matrix �� � ������ is called inverse grouping
matrix.

In order a grouping transformation to be valid, it should
preserve the constraint of atomicity of groups (� ��� � �
in correspondence to �� � � for tiling). In addition,
since within a group all tiles are concurrently executed by
the CPU’s of an SMP node, in order to preserve data con-
sistency, there should be no direct or indirect dependence
among them.

3.2 Determining �� according to the number of
CPU’s within a node

Consider now the general case, where we have an �-
dimensional tiled Iteration Space and a cluster of SMP
nodes, each with � processors inside. Our objective is to
assign the tiles of �� along of the �-st dimension to the
same CPU of an SMP node. Let us assume that the natural
number � can be written as � � �� � �� � � � � � ��,
where������ � � � ��� � � . Then, we select the grouping
matrices to be

�� �

�
���

� ��� � � � ���

� �� � � � �
...

...
. . .

...
� � � � � ��

�
��� �

�� � ������ �

�
���

� � � � � �
� �

��
� � � �

...
...

. . .
...

� � � � � �

��

�
��� �

(1)

The maximum number of tiles contained inside a group is
������� � �, exactly equal to the number of CPU’s inside
each SMP node.

In order to prove that�� defines a legal grouping trans-
formation, it suffices to prove that ���� � �, where ��

is the dependence matrix of the Tile Space � � and that any
two tiles ��� � ��

� � ��� within the same group are indepen-
dent. We have assumed (see 2) that the dependence matrix
�� contains only �’s and �’s. Consequently, the first con-
dition is apparently valid. In order to prove the second con-
dition, we assume that the dependence matrix �� is equal
to the unitary matrix. Even if there is a dependence vec-
tor with more than one �’s, it is the sum of more than one
unitary dependence vectors. So it will be included in the
following proof as an indirect dependence:

If tiles �� � ��
� � �� belong to the same group �� then

it holds that: 	����
 � 	����
�
 � ��� � ��� � � � � �



����� � �
�
� � ���

�

� ���
�

� � � � � �����
�

� ���
�

In addition,

if there is a direct or an indirect dependence from � � to ��
�

then it holds that ��
�

� �� �
	�

��� ����, where �� � �
and �� is a unitary dependence vector. The previous equal-
ity can be rewritten as follows: ��

�

� �� � �, where
� � ���� � � � � ���. Thus ���

�

� ��� � ��, � � �� � � � � �.
Therefore the equality ��� � ��� � � � � � ����� � �

�
� �

���
�

� ���
�

� � � �� �����
�

� ���
�

can be rewritten as follows:
�� � �� � � � � � �� � �. As ��� � � � � �� � � it holds
that �� � � � � � �� � �. Consequently, there is no direct
or indirect dependence between two iterations belonging to
the same group �� � �� and all tiles of a group in �� can
be computed simultaneously by the CPU’s of an SMP node.
Thus the above grouping transformation is valid according
to our algorithmic model.

Example 1: We have a cluster of SMP nodes with �
CPU’s and a NIC each. We assume a �-dimensional rect-
angular Tile Space �� . Let us assign the tiles along of the
dimension ��� to the same CPU, as indicated in Fig. 3 by
the grey arrows. The CPU’s of the same SMP node will
undertake two neighboring rows of tiles.
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Figure 3. 2D example
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Figure 4. Group Space for the 2D example

Then, during the time step t=0, the CPU-� of the SMP
node� computes tile ��� ��. During the time step � � �
the CPU-� of node� computes tile ��� ��, while the CPU-
� of the same SMP node computes tile ��� ��. Similarly,
during the time step � � � the CPU-� computes tile ��� ��,
while the CPU-� computes tile ��� ��. At the same time,
the data computed in tile ��� ��, which are necessary for the
computation of tile ��� ��, can be sent to node�. During the

time step t=3 the CPU’s of node0 can continue the execution
as above, while the CPU’s of node1 start executing the same
routine with the rows of tiles ��� �� and ��� ��.

In order to construct a time schedule for this example,
we group together the tiles that should be concurrently ex-
ecuted by the same SMP node. In particular, we perform
grouping to the Tile Space � � , as indicated in Fig. 3 and
derive the Group Space ��. The appropriate grouping
matrices, according to the formula (1), for this case are

�� �

�
� ��
� �

�
and �� � ������ �

�
� �
� �

�

�
.

In this way, tiles ��� �� and ��� �� which, as we have al-
ready mentioned, are simultaneously executed by the same
SMP node, are grouped together in �� � 	����� ��� 
 �
	����� ��� 
 � ��� ��� . Similarly, tiles ��� �� and ��� ��
are grouped together in �� � ��� ��� . In Fig. 3, the time
step, when each group will be computed, is shown, together
with the time step, where each data transfer will take place.
In Fig. 4, the corresponding Group Space is also shown. It
can be easily deduced that a group �� � ���� � �

�
� � � ��

will be executed during the time step ����� � ��� � ���
in the SMP node ��� . Therefore the linear time scheduling
vector for this example is 	� � ��� ��. �

3.3 Linear time schedule - CPU Tile Assignement

Applying the above grouping transforma-
tion, the �-st column-vector of the dependence
matrix �� � � is transformed to the vector
���

�

� ����� � ��� �� � � � � ��� . In addition, the �-
th column-vector of the dependence matrix �� � � ,
� � �� � � � � �, is transformed to the vector ����� �

��� �� � � � � �� �

��
� �� � � � � ��� . It imposes the dependencies

��� �� � � � � �� 	 �

��

� �� � � � � ��� � ��� �� � � � � �� �� �� � � � � ���

and ��� �� � � � � �� � �

��
�� �� � � � � ��� � ��� �� � � � � �� �� �� � � � �

��� in the Group Space. Thus, the dependence matrix of
the Group Space can be written as:

�
�
�



����

� � � � � � �
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...
...

. . .
...

...
� � � � � � �

� � � � � � �


����.

We are searching for an appropriate linear time schedul-
ing vector 	� � ���� � � � � � �

�
� � such that each group �� �

�� is computed during the time step � � 	���. Consider
the last ����� coordinates of a group indicating which SMP
node of the cluster will execute this group. Then, the groups
�� � ���� � � � � � �

�
� � and ��

�

� ���� ��� ��� � � � � � �
�
� � will be

successively computed within the same SMP node. There
is a dependence between them, as indicated by the first col-
umn of ��, but there is no need for a communication step
between their successive computation steps, because the
necessary data are already located in the local shared mem-



ory of the SMP node. Consequently, their time distance
	���

� � 	��� � ��� may be equal to �. Thus ��� � �.
In addition, the �-th column of �� �� � �� � � � �� imposes
a dependence between the groups �� � ���� � � � � � �

�
� � and

��
�

� ���� � �� ��� � � � � � �
�
���� �

�
� ��� ������ � � � � �

�
� �. These

groups are executed in neighboring SMP nodes, thus a
communication step is required between their computation
steps. It means that their time distance 	���

� � 	��� �
��� � ��� must be equal to �. Consequently ��� � �,
� � �� � � � � �. So the vector 	� � ��� �� � � � � �� is selected
for the linear time scheduling of our Group Space � �.

Notice that in [4, 12], for the single CPU pipelined
schedule, 	 was ��� �� � � � � �� according to the UET-UCT
theory. In other words, the optimal overlapping schedule
could be achieved when we had equal computation to com-
munication times, so that all communication could be hid-
den (overlapped) with the computation phase. Neverthe-
less, in the SMP case, presented here, the labeling of coor-
dinates of groups, that is the grouping transformation � �

slightly skews the space (see Fig. 3 and the resulting Group
Space in Fig. 4 the relative positions of groups ��� �� and
��� ��), so the optimal overlapping schedule is achieved by
��� �� � � � � ��.

For node labelling reasons, consider that the available
SMP nodes form a virtual �����-dimensional mesh. Thus,
each node is identified by a �� � ��-dimensional vector.
Then the last �� � �� coordinates of a group indicate the
SMP into which it will be executed. The first coordinate
affects only the time of its execution. Thus, a tile �� �
���� � � � � � �

�
� �, belonging to group �� � ���� � � � � � �

�
� �, will

be executed in node ���� � � � � � �
�
� � � �	 �����


� � � � � 	 �����

�.

Similarly, inside each SMP we consider a �� � ��-
dimensional CPU virtual mesh containing labels � ���
 �
������ � ��
	 � �	�� � �� � � � � � � ��.
Then a tile �� � ���� � � � � � �

�
� � will be executed by CPU

����
��� � � � � �
�
�
��� of SMP node �	 �����


� � � � � 	 �����

�.

So, apparently, only tiles with the same coordinate � �� will
be assigned to the same CPU of the same node.

3.4 Generalization: Grouping along an arbitrary
dimension of ��

If we want to assign the iterations along the �-th dimen-
sion of �� to the same CPU of an SMP node, then it can be
similarly proven that the appropriate grouping matrices are
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�
�����������
� (2)

respectively, where �� � � � � � ���� � ���� � � � � �
�� � �. As previously, the time scheduling vector is
	� � ��� � � � � ��. In addition, a tile �� � ���� � � � � � �

�
� �

belonging to group �� � ���� � � � � � �
�
� �, will be exe-

cuted within node ���� � � � � � �
�
���� �

�
���� � � � � �

�
� � by CPU

����
��� � � � � �
�
���
����� �

�
���
����� � � � � �

�
�
���.

Example 2: We have a cluster of SMP nodes with �
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Figure 5. 3D example

CPU’s and a NIC each. We assume a �-dimensional rect-
angular Tile Space �� . Let us assign the tiles along of the
dimension ��� to the same CPU, as indicated in Fig. 5 by
the grey arrows. The CPU’s of the same SMP node will
execute two neighboring rows of tiles which belong to the
same ��� ���� plane. In respect to the formula (2), we choose
the grouping matrices to be:

�� �

�
� � �
� � �
�� �� �

�
and �� �

� �

�
� �

� � �
� � �

�
.

In Fig. 5 we show the grouping of tiles and when each
computation step and each communication step will be exe-
cuted. It can be easily deduced that a group ���� � �

�
� � �

�
� � �

�� will be executed in node ���� � �
�
� � during the time step

����� � ��� ��
�
� ��

�
� . Therefore the linear time scheduling

vector for this example is 	� � ��� �� ��.
Let us assume that the rectangular Tile Space has

bounds: � � ��� � ����
	, � � ��� � ����
	, � �
��� � ����
	, where ����
	 is an even number. Then, the
bounds of the corresponding Group Space will be � �



��� � 	 ��������

�

 �

������

�
� �, � � ��� � ����
	 � �,

� � ��� � ����
	 � �
�
��
	 � �

�
��
	 � �. During the first

time step � � �, the group ��� �� �� will be computed. Dur-

ing the last time step � � �������

�
������
	� �

�
��
	��, the

group � �
�
����

�
� �� ����
	 � �� ����
	� �

�
��
	� �

�
��
	� ��

will be computed. Thus the total execution steps will be

� �
�������

�
� �����
	 � �

�
��
	 � �. �

3.5 Comparison

In this section we shall compare vertical grouping, which
is indicated in Fig. 1, with the proposed scheme of hyper-
plane grouping, which is shown in Fig. 2, 3 in the case of
a �-dimensional algorithm and a cluster of SMP’s with �
CPU’s each.

CPU0

CPU1

x

y

y

y

x/N(a) (b) (c)

hyperplane

Figure 6. Splitting tiles in vertical scheme

As we have already mentioned, vertical grouping can-
not exploit the computational power of both CPU’s of our
SMP’s unless we split each tile into smaller subtiles and
compute some of them in parallel, as shown in Fig. 6. Let
us assume that a CPU needs time � for the computation of
a tile with dimensions �, � (Fig. 6a). Consequently, it will
need time �

� for the computation of a respective subtile with
dimensions 	

� , � (Fig. 6c). The subtiles which are created
can be computed by � CPU’s in� �� computational steps,
interleaved with � synchronization steps, following an op-
timal linear time schedule ��� �� as in Fig. 6c. If the average
time consumed for the synchronization of � CPU’s of an
SMP node is ����� ��, then the total time required for the
computation of a pair of initial tiles is:

	 � 

� � �

�
�������� ��� (3)

The time required for the computation of a pair of tiles is
minimized when

� �

�



������ ��

� (4)

Therefore, the minimum value of � is ���� � � �
�
�
������ �� � �.
If we consider an Iteration Space with size  � ! ,

tiled with rectangular tiles with size � � �, (for example
in Fig. 1,2 we have �

	 � ��� �� � ), then we have the
following options:

1. Following the non-overlapping scheme (which can
be implemented using blocking calls) in combination with
vertical grouping, the number of time steps required for
the completion of the algorithm is � � �

	 � �
�� � �.

The minimum duration of a time step is ���� � �����,
where ����� is the time required for the communication
between two SMP nodes. Thus the total time required is
"���������������
� � � ������������ � ��	 �

�
�� �������

������.

2. Following the overlapping scheme (which can be im-
plemented using non-blocking calls) in combination with
vertical grouping, the number of time steps required for
the completion of the algorithm is � � �

	 � �
� � �.

According to the formula "�����
� � � ���
�� ��
 �
���������� ����� ��
� � �������� (explained in [4]), if
we set ����� � ����, the minimum duration of a time
step is ��
�� ��
 � �#������� ����� ��
� � �������.
Thus the total time required is "�������������������
� �
� ���
�� ��
 � �#������� ����� ��
� � �������� �
��	 �

�
� ����
�� ��
��#������� ����� ��
����������.

If ���� � ����� ��
, then "�������������������
� � ��	 �
�
� ����
�� ��
 � ���� � ��������.

3. Following the overlapping scheme in combination
with hyperplane grouping, the number of time steps
required for the completion of the algorithm is � �
�
	 � ��

�� � �. According to the formula "�����
� �

� ���
�� ��
����������� ����� ��
� � ��������, if we
set ����� � �, the minimum duration of a time step is
��
�� ��
��#���� ����� ��
���������. Thus the total
time required is "��������������������
�� � � ���
�� ��
�
�#���� ����� ��
���������� � ��	 �

��
�� ����
�� ��
�

�#���� ����� ��
� � ��������. If � � ����� ��
, then
"��������������������
�� � ��	 � ��

�� ����
�� ��
 � � �

��������.

In most real problems it holds that ���
��	 � �� �. There-

fore, the overlapping scheme in combination with vertical
grouping is more efficient than the non-overlappingscheme,
in case that ���� � �����, when ����� �

 
�
���
�� ��
�

���� � ��������. In addition, the overlapping scheme
in combination with hyperplane grouping is more efficient
than the overlapping scheme in combination with vertical
grouping when ��	 � ��

�� ����
�� ��
 � � � �������� �

��	 � �
� ����
�� ��
 � � � �

�
������ �� � ��������.

If we consider ��
�� ��
 � ������� � � then we get

�
�

��	�
� ��

� �
 ��
�� �  

�
� ����� �� � �

�
 
�

��
. But

in any case the hyperplane grouping has the advantage that
it needs no extra tiling inside each tile in order to exploit the
computational force of the CPU’s.



4 Experimental results

In [12] we applied the pipelined schedule proposed in
[4], using a cluster of single CPU nodes with PCI-SCI NICs.
In this paper, in order to evaluate the proposed methods, we
ran our experiments on a Linux SMP cluster with 8 identical
nodes. Each node had 128M of RAM and 2 Pentium III 800
MHz CPUs. The cluster nodes were interconnected with an
SCI ring, using SCI Dolphin’s PCI-SCI D330 cards. SCI
NICs support shared memory programming, either through
PIO (Programmed-IO) messaging, or through DMA. We are
using their kernel-level DMA support for messaging. In-
voking kernel system calls, causes extra CPU cycles over-
head. However, we can avoid extra copying from user space
to kernel space (physical memory) when using DMA. We
allocate user level pages, which correspond to physically
contiguous pre-reserved memory regions, for DMA com-
munications.

Our test application was the following code:

for(i=1; i<=X; i++)
for(j=1; j<=Y; j++)
for(k=1; k<=Z; k++)
A[i][j][k]=func(A[i-1][j][k],

A[i][j-1][k],A[i][j][k-1]);

where$ is an array of �! �� floats and � ! �� �.
Without lack of generality, we select as a tile a rectangle
with ��, �� and �� sides. The dimension � is the largest
one, so all tiles along the �-axis are mapped onto the same
processor, as proposed in [4]. Each tile has �, � dimensions
equal to � and the tile’s “height” along �-axis equal to %.
There are �

	 tiles along of the dimensions � and � and !
"

tiles along of the dimension �. Tile’s volume is equal to
& � ��%, and since the number of available processors is
initially known, the only unknown parameter is %.

We applied both vertical and hyperplane grouping, us-
ing both blocking and non-blocking communication primi-
tives. For each exemplary Iteration Space and each possible
tile height, we calculated the total execution time for the
above schemes. In order to implement these schemes we
used Linux POSIX threads with semaphores for the syn-
chronization among the processors of an SMP node and the
SISCI driver and libraries for the communication among the
SMP nodes.

First of all, as far as the implementation of vertical
grouping is concerned, we experimentally verified formula
(4), in order to find the optimal execution time for a cou-
ple of tiles by an SMP node. Once vertical grouping was
implemented and precisely approximated with a theoretical
formula, we implemented both blocking and non-blocking
communication schemes. As far as the blocking commu-
nication scheme is concerned, it was implemented using
the pseudo-code of Table 1. On the other hand, the non-

i

j

(i,j-1) (i,j-1)

(i,j+1) (i,j+1)

(i+1,j)(i-1,j)

CPU 0 CPU 1

SMP node(i,j)

Figure 7. CPU communication directions

Table 1. Non-overlapping scheme Implemen-
tation

Thread 0 Thread 1

foreach group assigned foreach group assigned
to node(i,j) do� to node(i,j) do�

receive from node(i-1,j)
receive from node(i,j-1) receive from node(i,j-1)
compute tile(i,j,k,CPU0) compute tile(i,j,k,CPU1)

send to node(i+1,j)
send to node(i,j+1) send to node(i,j+1)
semaphore post(sem s1) semaphore post(sem s2)
semaphore wait(sem s2) semaphore wait(sem s1)

� �

blocking scheme was implemented using the pseudo-code
of Table 2, because during each time step, every SMP node
in the �� plane with coordinates ��� �� receives from neigh-
boring nodes ����� �� and ��� ����, computes and sends to
nodes ����� ��,��� � ��� (Fig. 7). Since the send dma()
call is not blocking, the computation of the tiles will be per-
formed concurrently with the transferring of data among the
SMP nodes. After the execution of wait dma(), it is as-
sured that both computation and communication are already
completed.

The implementation of vertical and hyper-
plane grouping was achieved by a proper com-
pute tile(i,j,k,CPUx) procedure. In order to
implement vertical grouping we used the pseudocode of

Table 3. Vertical vs. Hyperplane Grouping
Vertical grouping

compute tile(i,j,k,CPU0): compute tile(i,j,k,CPU1):
foreach subtile of this tile do� foreach subtile of this tile do�

compute each iteration
of this subtile

semaphore post(sem1) semaphore post(sem2)
semaphore wait(sem2) semaphore wait(sem1)

compute each iteration
of this subtile

� �

Hyperplane grouping
compute tile(i,j,k,CPU0): compute tile(i,j,k,CPU1):
compute each iteration of this tile compute each iteration of this tile



Table 2. Overlapping scheme Implementation
Thread 0 Thread 1 Explanation

foreach group assigned to node(i,j) do� foreach group assigned to node(i,j) do�
trigger interrupt to node(i-1,j) Inform “previous” nodes:
trigger interrupt to node(i,j-1) trigger interrupt to node(i,j-1) “I am ready to accept data”

wait interrupt from node(i+1,j) Wait until “next” nodes
wait interrupt from node(i,j+1) wait interrupt from node(i,j+1) are ready to accept data

send dma(node(i+1,j),data) Initialization of DMA transfer
send dma(node(i,j+1),data) send dma(node(i,j+1),data) to neighboring nodes
compute tile(i,j,k,CPU0) compute tile(i,j,k,CPU1)

wait dma() Wait for DMA to complete
wait dma() wait dma()

trigger interrupt to node(i+1,j) Inform “next” nodes:
trigger interrupt to node(i,j+1) trigger interrupt to node(i,j+1) “Your data has arrived”
wait interrupt from node(i-1,j) Wait until “previous” nodes
wait interrupt from node(i,j-1) wait interrupt from node(i,j-1) have finished sending data
semaphore post(sem s1) semaphore post(sem s2)
semaphore wait(sem s2) semaphore wait(sem s1)

Implementation of a barrier

� �

Table 3. The number of subtiles inside a tile was selected
according to formula (4). Notice that, the implementation
of hyperplane grouping was much simpler as it is shown in
Table 3.
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Figure 8. Experimental Results

The problem was solved using various values of � !
and �. For each schedule, we are interested in the overall
minimum execution time achieved at an optimally selected
tile height (see [4, 12, 5]). The experimental results, shown
in Figs 8-9, illustrate that in every case non-blocking com-
munication is preferable to blocking communication and
hyperplane grouping is preferable to vertical grouping. The
lowest minimum is clearly achieved when using hyperplane
grouping in combination with non-blocking communica-
tion, in all cases.

As far as hyperplane grouping in combination with
non-blocking communication is concerned, according to
our scheduling theory, as in Example 2, the number of
time steps required for the completion of an experiment

is � ��� �� %� � ��
�	 � ��

� � !
" � �. The minimum dura-

tion of a time step, as mentioned in 3.5, is ���
�� ��
 �
��������������. Thus, "��������������������
�� � � ��

�	 �
��
� � !

" � �����
�� ��
� ������ ��������. This formula
was used to produce the theoretical curves of Figs 8-9 with
values ��
�� ��
 � ������� � ���'(�� and ����� ���� �
��%������, where ������ is the execution time of a single
iteration and it was measured equal to ��� �(��.

One can easily verify from Figs 8-9 that the graphs of the
theoretical model are very close to the corresponding exper-
imental graphs not only at the desired minimum, but along
the whole graph. Thus, the theoretical model of scheduling
is strongly verified by the experimental results.

5 Conclusions – Future Work

In this paper we presented a novel approach for the time
scheduling of tiled nested loops on a cluster of SMP nodes.
We minimized the total execution time by overlapping the
computation with communication (as in [4, 12]). In ad-
dition, we achieved the maximum CPU’s utilization with
a proper grouping transformation. What remains open is
an analytical computation of the parameters ��� � � � ���

of our grouping matrix according to the initial space shape
and communication minimization criteria and an adaption
of our theory for a cluster with a fixed number of SMP
nodes.
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