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Abstract: This article emphasizes on load balancing issues associated with hybrid
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balance between threads. This observation mainly reflects the fact that most existing
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In order to mitigate this effect, we propose a generic method for the application of
load balancing on the coarse-grain hybrid model for the appropriate distribution of
the computational load to the working threads. We adopt both a static, as well as
a dynamic load balancing approach, and implement three alternative balancing vari-
ations. All implementations are experimentally evaluated against kernel benchmarks,
in order to demonstrate the potential of such load balancing schemes for the extraction
of maximum performance out of hybrid parallel programs.
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1 INTRODUCTION

SMP clusters have dominated the high performance com-
puting domain by providing a reliable, cost-effective solu-
tion to both the research and the commercial communities.
An immediate consequence stemming from the emersion of
this new architecture is the consideration of new parallel
programming models, which might exploit the underlying
infrastructure more efficiently. Currently, message pass-
ing parallelization via the MPI library has become the
de-facto programming approach for the development of
portable code for a variety of high performance platforms.
Although message passing parallel programs are generic
enough, so as to be directly adapted to multi-layered, hi-
erarchical architectures in a straightforward manner, there
is an active research interest in considering alternative par-
allel programming models, that could be more appropriate
for such platforms.

Hybrid programming models on SMP clusters resort to
both message passing and shared memory access for inter-
and intra-node communication, respectively, thus imple-
menting a two-level hierarchical communication pattern.
Usually, MPI is employed for the inter-node communica-
tion, while a multi-threading API, such as OpenMP, is used
for the intra-node processing and synchronization. There
are mainly two hybrid programming variations addressed
in related work, namely the fine-grain incremental hybrid
parallelization, as well as the coarse-grain SPMD-like alter-
native. Naturally, other cluster parallelization approaches
also exist, such as using a parallel programming language,
like HPF (Merlin and Hey (1995)) or UPC (El-Ghazawi
et al. (2002)), and relying on the compiler for efficiency,
or even visualizing a single shared memory system image
across the entire SMP cluster, implemented with the aid
of a Distributed Shared Virtual Memory (DSVM) software
(Morin and Puaut (1997), Hu et al. (2000)). Nevertheless,
these techniques are not as popular as either the message
passing approach, or even hybrid parallel programming,
hence they will not be discussed here.

Tiled loop algorithms account for a large fraction of
the computational intensive part of many existing scien-
tific codes. A typical representative of this application
model stems from the discretization of Partial Differential
Equations (PDEs). We consider generic N +1-dimensional
tiled loops, which are parallelized across the outermost N

dimensions, so as to perform sequential execution along
the innermost dimension in a pipeline fashion, interleav-
ing computation and communication phases. These algo-
rithms impose significant communication demands, thus
rendering communication-efficient parallelization schemes
critical in order to obtain high performance. Moreover, the
hybrid parallelization of such algorithms is a non-trivial is-
sue, as there is a trade-off in programming complexity and
parallel efficiency.

Hybrid parallelization is a popular topic in related litera-
ture, although it has admittedly delivered controversial re-
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sults (Cappello and Etiemble (2000), Drosinos and Koziris
(2004), Henty (2000), Dong and Karniadakis (2004), Loft
et al. (2001), Ayguadé et al. (2004), Majumdar (2000),
Nakajima (2003), Su et al. (2004) etc). In practice, it is
still a very open subject, as the efficient use of an SMP
cluster calls for appropriate scheduling methods and load
balancing techniques. Most message passing libraries pro-
vide a limited multi-threading support level (e.g. fun-
neled), allowing only the master thread to perform mes-
sage passing communication. Even under multiple thread
support, the additional complexity associated with ensur-
ing thread safety can potentially diminish the load bal-
ancing advantages of full multi-threading support. There-
fore, additional load balancing must be applied, so as
to equalize the per tile execution times of all threads.
This effect has been theoretically spotted in related lit-
erature (Rabenseifner and Wellein (2003), Legrand et al.
(2004), Chavarŕıa-Miranda and Mellor-Crummey (2003),
Darte et al. (2003)), but to our knowledge no generic load
balancing technique has been proposed and, more impor-
tantly, evaluated.

In this article we propose both static and dynamic load
balancing for the coarse-grain funneled hybrid paralleliza-
tion of tiled loop algorithms. The computational load
associated with a tile is appropriately distributed among
threads, either statically, based upon the estimation and
modeling of basic system parameters, or at run-time, by
sampling relative computation and communication times
and dynamically applying appropriate load balancing. We
distinguish between two variations of static load balancing,
namely both a constant and a variable scheme, depending
on whether the same task distribution is applied on a global
or a per process base, respectively. We emphasize on the
elements of applicability and simplicity, and evaluate the
efficiency of the proposed scheme against two popular ker-
nel benchmarks, namely ADI integration and a backward
discretization of the Diffusion Equation. The experimental
evaluation eloquently demonstrates the merit of load bal-
ancing when following the hybrid parallelization approach,
and yields to significant overall performance improvement
over the dominant message passing model.

The rest of this article is organized as follows: Section 2
discusses our target algorithmic model and introduces the
notation used throughout the article. Section 3 refers to
a pure message passing parallelization of tiled loop algo-
rithms, while Section 4 presents the hybrid programming
alternatives. Section 5 focuses on the proposed load bal-
ancing schemes, whereas Section 6 experimentally evalu-
ates the efficiency of these schemes against ADI and DE
kernels. Last, Section 7 concludes the paper and summa-
rizes the performance results.

2 ALGORITHMIC MODEL - NOTATION

Our algorithmic model concerns tiled algorithms, that can
be formally described as in Alg. 1. Such algorithms can
be typically obtained by applying tiling transformation to
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fully permutable loops. Tiling is a popular loop transfor-
mation and can be applied in order to implement coarse
granularity in parallel programs. Tiling partitions the orig-
inal iteration space of an algorithm into atomic units of ex-
ecution (tiles). This partitioning facilitates the paralleliza-
tion of the algorithm, as a tile-to-process allocation scheme
can be selected to implement domain decomposition in a
straightforward manner. In our case, each process assumes
the execution of a sequence of tiles, successive along the
longest dimension of the original iteration space.

Algorithm 1: iterative algorithm model

foracross tile1 ← 1 to H(X1) do1

. . .2

foracross tileN ← 1 to H(XN) do3

for tileN+1 ← 1 to H(Z) do4

Receive(
−→
tile);5

Compute(
−→
tile);6

Send(
−→
tile);7

Formally, we assume an N + 1-dimensional algorithm
with an iteration space of X1 × · · · ×XN × Z, which has
been partitioned using a tiling transformation defined by
function H. Z is considered the longest dimension of the it-
eration space, and should be brought to the innermost loop
through permutation, in order to simplify the generation
of efficient parallel tiled code (Wolf and Lam (1991)). In
the above code, tiles are identified by an N +1-dimensional

vector
−→
tile = (tile1, . . . , tileN+1). foracross implies par-

allel execution, as opposed to sequential execution (for).

In each tile denoted by a specific instance of vector
−→
tile,

a process first receives data required for the computations
associated with the current tile (Receive), then performs
these computations (Compute) and finally transmits com-
puted data required by its neighboring processes (Send).

Generally, tiled code is associated with a particular tile-
to-process distribution strategy, that enforces explicit data
distribution and implicit computation distribution, accord-
ing to the computer-owns rule. For homogeneous platforms
and fully permutable iterative algorithms, related scientific
literature (Calland et al. (1997)) has proven the optimality
of the columnwise allocation of tiles to processes, as long as
sequential pipelined execution along the longest dimension
is assumed. Therefore, all parallel algorithms considered
in this paper implement computation distribution across
the N outermost dimensions, while each process computes
a sequence of tiles along the innermost N +1-th dimension.

In most practical cases, the data dependencies of the
algorithm are of several orders of magnitude smaller com-
pared to the iteration space dimensions. Consequently,
only neighboring processes need to communicate, assum-
ing reasonably coarse parallel granularities, which are com-
mon for the distributed memory architectures addressed
here. According to the above, we only consider unitary
process communication directions for our analysis, since
all other non-unitary process dependencies can be satis-

fied according to indirect message passing techniques, such
as the ones described in Tang and Zigman (1994). How-
ever, in order to preserve the communication pattern of
the application, we consider a weight factor di for each
process dependence direction i, implying that if iteration
~j = (j1, . . . , ji, . . . , jN+1) is assigned to a process ~p, and

iteration ~j′ = (j1, . . . , ji + di, . . . , jN+1) is assigned to a

different process ~p′, ~p 6= ~p′, then data calculated at iter-
ation ~j from ~p need to be sent to ~p′, since they will be
required for the computation of data at iteration ~j′.

In the following, P1×· · ·×PN and T1×· · ·×TN denote the
process and thread topology, respectively. P =

∏N
i=1 Pi is

the total number of processes, while T =
∏N

i=1 Ti the to-
tal number of threads. Usually, if Pmpi the total number
of processes for the message passing programming model,
whereas Phybrid the total number of processes and Thybrid

the respective number of threads for the hybrid model,
both quantities Pmpi and Phybrid × Thybrid equal the to-
tal number of available processors, in order to fully exploit
the computational infrastructure for the particular class
of algorithms we address in this article. Nevertheless, for
the sake of generality, we will only be considering pro-
cesses and threads, as opposed to processors, where vector
~p = (p1, . . . , pN ), 0 ≤ pi ≤ Pi − 1 identifies a specific pro-
cess, while ~t = (t1, . . . , tN ), 0 ≤ ti ≤ Ti − 1 refers to a par-
ticular thread. Throughout the text, we will use MPI and
OpenMP notations in the proposed parallel algorithms.

3 MESSAGE PASSING PARALLELIZATION

The proposed pure message passing parallelization for the
algorithms described above is based on the tiling transfor-
mation and is schematically depicted in Alg. 2. Each pro-
cess is identified by N -dimensional vector ~p, while different
tiles correspond to different instances of N +1-dimensional

vector
−→
tile. The N outermost coordinates of a tile specify

its owner process ~p, while the innermost coordinate tileN+1

iterates over the set of tiles assigned to that process. z

denotes the tile height along the sequential execution di-
mension, and determines the granularity of the achieved
parallelism: higher values of z imply less frequent com-
munication and coarser granularity, while lower values of
z call for more frequent communication and lead to finer
granularity. The investigation of the effect of granular-
ity on the overall completion time of the algorithm and
the selection of an appropriate tile height z are beyond
the scope of this paper. Generally, we consider z to be
a user-defined parameter, and perform measurements for
various granularities, in order to experimentally determine
the value of z that delivers minimal execution time. More
on the effect of granularity on the parallel performance can
be found in Kumar et al. (2003), Hodzic and Shang (1998),
Andonov et al. (2003).

Furthermore, an advanced scheduling that allows for
computation-communication overlapping is adopted as fol-
lows: In each time step, a process ~p = (p1, . . . , pN )
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Algorithm 2: pure message passing model

/*determine tile sequence from pid ~p */

for i← 1 to N do1

tilei = pi;2

/*main loop: traverse all tiles */

for tileN+1 ← 1 to
⌈

Z
z

⌉

do3

/*for each active transmission direction
−→
dir...

*/

foreach
−→
dir ∈ S~p do4

/*...pack previously computed data... */

Pack(
−→
dir,tileN+1 − 1,~p);5

/*...and send to process ~p +
−→
dir */

MPI Isend(~p +
−→
dir);6

/*for each active reception direction
−→
dir... */

foreach
−→
dir ∈ R~p do7

/*...receive from process ~p −
−→
dir for next

tile */

MPI Irecv(~p−
−→
dir);8

/*compute current tile */

Compute(
−→
tile);9

/*complete pending communication */

MPI Waitall ;10

/*for each active reception direction
−→
dir... */

foreach
−→
dir ∈ R~p do11

/*...appropriately unpack received data */

Unpack(
−→
dir,tileN+1 + 1,~p);12

concurrently computes a tile (p1, . . . , pN , tileN+1), re-
ceives data required for the computation of the next tile
(p1, . . . , pN , tileN+1 + 1) and sends data computed at the
previous tile (p1, . . . , pN , tileN+1 − 1). S~p denotes the set
of valid data transmission directions of process ~p, that is,

if
−→
dir ∈ S~p for a non-boundary process ~p, then ~p needs to

send data to process ~p +
−→
dir. Similarly, R~p corresponds to

the valid data reception directions of process ~p, implying

that process ~p should receive data from process ~p −
−→
dir if

−→
dir ∈ R~p. S~p and R~p are determined both by the data
dependencies of the original algorithm, as well as by the
selected process topology of the parallel implementation.

For the true overlapping of computation and communi-
cation, as theoretically implied in the above scheme by
combining non-blocking communication primitives with
the overlapping scheduling, the usage of advanced CPU of-
floading features is required, such as zero-copy and DMA-
driven communication. Unfortunately, experimental eval-
uation over a standard TCP/IP based interconnection net-
work, such as Ethernet, combined with the ch p4 ADI-2
device of the MPICH implementation, prohibits such ad-
vanced non-blocking communication, but nevertheless the
same limitations hold for our hybrid model, and are thus
not likely to affect the relative performance comparison.
However, this fact does complicate our theoretical analy-
sis, since we will assume in general distinct, non-overlapped
computation and communication phases, an assumption
that to some extent misrepresents the efficiency of the mes-
sage passing communication primitives.

4 HYBRID PARALLELIZATION

The potential for hybrid parallelization is directly asso-
ciated with the multi-threading support provided by the
message passing library. From that perspective, there are
mainly five levels of multi-threading support addressed in
relevant scientific literature:

1. single No multi-threading support.

2. masteronly Message passing routines may be called,
but only outside of multi-threaded parallel regions.

3. funneled Message passing routines may be called even
within multi-threaded parallel regions, but only by the
master thread. Other threads may run application
code at this time.

4. serialized All threads are allowed to call message pass-
ing routines, but only one at a time.

5. multiple All threads are allowed to call message pass-
ing routines, without restrictions.

Each category is a superset of all previous ones. Cur-
rently, popular non-commercial message passing libraries
provide support up to the funneled or serialized thread sup-
port level, thus effectively restraining the message passing
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communication capabilities within multi-threaded regions,
while only few proprietary libraries allow for full multi-
threading support (multiple thread support level). Due to
this fact, most attempts for hybrid parallelization of ap-
plications, that have been proposed or implemented, are
mostly restricted to the first three thread support levels.

Two major hybrid parallel programming variations are
discussed in related literature, namely fine-grain and
coarse-grain. The fine-grain model applies incremental
multi-threading parallelization solely to specific computa-
tional code parts, and therefore requires minimum multi-
threading support on behalf of the message passing li-
brary, as even the masteronly thread support level is suffi-
cient. On the other hand, the coarse-grain hybrid program-
ming model enforces an SPMD-like programming style by
spawning threads only once close to the beginning of the
program, thus calling for at least a funneled thread support
level, as message passing will have to be conducted within
multi-threaded parallel regions. The particular thread sup-
port level provided by the message passing library leads to
two further flavors of the coarse-grain hybrid model, de-
pending on whether only the master thread is allowed to
perform message passing communication, or if all threads
are enabled to call message passing primitives. The appli-
cation of the three hybrid models (fine-grain, coarse-grain
funneled and coarse-grain multiple) in the parallelization
process of tiled loop algorithms will be the subject of this
Section.

4.1 Fine-grain Hybrid Parallelization

The fine-grain hybrid programming paradigm, also re-
ferred to as masteronly in related literature, is the most
popular hybrid programming approach, although it raises
a number of performance deficiencies. The popularity of
the fine-grain model over the coarse-grain one is mainly
attributed to its programming simplicity: in most cases,
it is a straightforward incremental parallelization of pure
message-passing code by applying block distribution work
sharing constructs to computationally intensive code parts
(usually loops). Because of this fact, it does not require sig-
nificant restructuring of the existing message passing code,
and is relatively simple to implement by submitting an ap-
plication to performance profiling and further parallelizing
performance critical parts with the aid of multi-threading
processing. Also, fine-grain parallelization is the only fea-
sible hybrid approach for those message passing libraries,
that support only masteronly multi-threading.

However, the efficiency of the fine-grain hybrid model
is directly associated with the fraction of the code that
is incrementally parallelized, according to Amdahl’s law:
since message passing communication can be applied only
outside of parallel regions, other threads are essentially
sleeping when such communication occurs, resulting to
poor CPU utilization and inefficient overall load balanc-
ing. Also, this paradigm suffers from the overhead of re-
initializing the thread structures every time a parallel re-
gion is encountered, since threads are continually spawned

and terminated. The thread management overhead can
be substantial, especially in case of a poor implementa-
tion of the multi-threading library, and generally increases
with the number of threads. Moreover, incremental loop
parallelization is a very restrictive multi-threading paral-
lelization approach for many real algorithms, where such
loops either do not exist or cannot be directly enclosed by
parallel regions.

Algorithm 3: fine-grain hybrid model

/*determine group sequence from pid ~p */

for i← 1 to N do1

groupi = pi;2

/*main loop: traverse all group instances */

foreach groupN+1 ∈ G~p do3

/*for each active transmission direction
−→
dir...

*/

foreach
−→
dir ∈ S~p do4

/*...pack data computed at previous

group... */

Pack(
−→
dir,groupN+1 − 1,~p);5

/*...and send data to process ~p +
−→
dir */

MPI Isend(~p +
−→
dir);6

/*for each active reception direction
−→
dir... */

foreach
−→
dir ∈ R~p do7

/*...receive from ~p −
−→
dir for next group */

MPI Irecv(~p−
−→
dir);8

/*multi-threaded parallel construct */

#pragma omp parallel9

/*calculate candidate tile to execute... */

for i← 1 to N do10

tilei = piTi + ti;11

tileN+1 = groupN+1 -
∑N

i=1 tilei;12

/*...and compute if valid tile */

if 1 ≤ tileN+1 ≤
⌈

Z
z

⌉

then13

Compute(
−→
tile);14

/*complete pending communication */

MPI Waitall ;15

/*for each active reception direction
−→
dir... */

foreach
−→
dir ∈ R~p do16

/*...appropriately unpack received data */

Unpack(
−→
dir,groupN+1 + 1,~p);17

The proposed fine-grain hybrid implementation for iter-
ative algorithms is depicted in Alg. 3. Hyperplane schedul-
ing categorizes the tiles assigned to all threads of a specific
process into groups, which can be concurrently executed.
Each group contains all tiles, that can be safely executed in
parallel by the specified number of threads T , without vio-
lating the data dependencies of the initial algorithm. Each
group is identified by a N + 1-dimensional vector −−−→group,
where the N outermost coordinates denote the owner pro-
cess ~p, and the innermost one iterates over the distinct
time steps. G~p corresponds to the set of execution time
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steps of process ~p, and depends both on the process and
thread topology. Formally, vector −−−→group and set G~p are
defined as follows:

−−−→group = (group1, . . . , groupN , groupN+1)

groupi =

{

pi, 1 ≤ i ≤ N

g ∈ G~p, i = N + 1

G~p =

{

g ∈ N|

N
∑

i=1

piTi + 1 ≤ g ≤

N
∑

i=1

piTi +

+
N

∑

i=1

{Ti − 1}+

⌈

Z

z

⌉}

For each instance of vector −−−→group, each thread determines

a candidate tile
−→
tile for execution, and further evaluates

an if -clause to check whether that tile is valid and should
be computed at the current time step.

X1

X2

Z

P1 = 3
P2 = 2
T1 = 3
T2 = 2

)0,1(=pr
)0,0(=tr

43 =tile

43 =group

process
thread

Figure 1: Hybrid parallel program for 3D algorithm and 6
processes × 6 threads

All message passing communication is performed out-
side of the parallel region (lines 4-8 and 15-17), while the
multi-threading parallel computation occurs in lines 9-14.
Note that no explicit barrier is required for thread syn-
chronization, as this effect is implicitly achieved by exiting
the multi-threaded parallel region. Note also that only
the code fraction in lines 9-14 fully exploits the underly-
ing processing infrastructure, thus effectively limiting the
parallel efficiency of the algorithm. Fig. 1 clarifies some of
the notation used in the hybrid algorithms.

4.2 Coarse-grain Funneled Hybrid Parallelization

According to the coarse-grain model, threads are only
spawned once and their ids are used to determine their
flow of execution in the SPMD-like code. Obviously, mes-
sage passing communication will be performed within the
multi-threaded parallel region, hence the coarse-grain pro-
gramming model requires at least a funneled thread sup-
port level. Assuming funneled multi-threading support,
the master thread will have to undertake the entire mes-
sage passing communication required for the inter-node
data transfer, though other threads will be allowed to per-
form computation at the same time. We shall briefly re-
fer to this case as coarse-grain funneled model, or simply
coarse-grain model in short.

The additional promising feature of the coarse-grain ap-
proach is the potential for overlapping multi-threaded com-
putation with message passing communication. However,
due to the restriction that only the master thread is allowed
to perform message passing, a naive straightforward imple-
mentation of the coarse-grain model suffers from load im-
balance between the threads, if equal portions of the com-
putational load are assigned to all threads. Therefore, ad-
ditional load balancing must be applied, so that the master
thread will assume a relatively smaller computational load
compared to the other threads, thus equalizing the per tile
execution times of all threads. Moreover, the coarse-grain
model avoids the overhead of re-initializing thread struc-
tures, since threads are spawned only once, and can po-
tentially implement more generic parallelization schemes,
as opposed to its limiting fine-grain counterpart.

The pseudo-code for the coarse-grain parallelization of
the tiled algorithms is depicted in Alg. 4. Note that the
inter-node communication (lines 8-13 and 17-20) is con-
ducted by the master thread, per communication direc-
tion and per owner thread, incurring additional complexity
compared both to the pure message passing and the fine-
grain model. Also, note the bal(~p,~t) parameter in the
computation, that corresponds to a balancing factor for
thread ~t of process ~p and optionally implements load bal-
ancing between threads, as will be described in Section 5.

4.3 Coarse-grain Multiple Hybrid Parallelization

Should the message passing library provide full multi-
threading support, another variation of the coarse-grain
hybrid parallelization scheme is feasible. In fact, in that
case of a thread-safe message passing library, relatively less
programming effort is required compared to the funneled
paradigm, as each thread can in theory satisfy its own com-
munication needs. Moreover, the multiple thread support
level allows for a more balanced distribution of the com-
munication load to the available threads, as opposed to the
funneled model, where the master thread undertakes the
entire task of inter-process communication.

However, as message passing libraries consider only pro-
cesses as peer communicating entities, additional care must
be taken to implement point-to-point communication be-
tween threads residing on different processes with the aid
of the message passing primitives. For instance, according
to the MPI standard, there is no direct way for thread ~ti
residing on process ~p to address thread ~tj of a different

process ~p′. Message passing communication can be estab-
lished only between the two processes ~p and ~p′, as opposed
to a finer level between threads. As a workaround to this
problem, it is possible to implicitly integrate the thread id
information into the MPI message tag, so that a message
coming from a remote thread is indirectly matched only
by the appropriate local thread.

Alg. 5 outlines the coarse-grain multiple implementa-
tion. The algorithm is similar to Alg. 4, except that the
master directives have been removed, since all threads
contribute to the inter-process communication. S~p,~t cor-
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Algorithm 4: coarse-grain funneled hybrid model

/*multi-threaded parallel construct */

#pragma omp parallel1

/*determine group and tile sequences */

for i← 1 to N do2

groupi = pi;3

tilei = piTi + ti;4

/*main loop: traverse all group instances */

foreach groupN+1 ∈ G~p do5

/*calculate candidate tile to execute... */

tileN+1 = groupN+1 -
∑N

i=1 tilei;6

/*only master thread communicates */

#pragma omp master7

/*for each active process transmission

direction... */

foreach
−→
dir ∈ S~p do8

/*...pack communication data for all

threads... */

for th← 1 to T do9

Pack( ~dir,groupN+1 − 1,~p,th);10

/*...and send to neighbor process */

MPI Isend(~p +
−→
dir);11

/*for each active process reception

direction... */

foreach
−→
dir ∈ R~p do12

/*...receive data from neighbor

process */

MPI Irecv(~p−
−→
dir);13

/*compute (balanced?) if valid tile */

if 1 ≤ tileN+1 ≤
⌈

Z
z

⌉

then14

Compute(
−→
tile,bal(~p,~t));15

/*only master thread communicates */

#pragma omp master16

/*complete pending communication */

MPI Waitall ;17

/*for each active process reception

direction... */

foreach
−→
dir ∈ R~p do18

/*...unpack communication data for

all threads */

for th← 1 to T do19

Unpack(
−→
dir,groupN+1 + 1,~p,th);20

/*synchronize threads for next time step */

#pragma omp barrier21

Algorithm 5: coarse-grain multiple hybrid model

/*multi-threaded parallel construct */

#pragma omp parallel1

/*determine group and tile sequences */

for i← 1 to N do2

groupi = pi;3

tilei = piTi + ti;4

/*main loop: traverse all group instances */

foreach groupN+1 ∈ G~p do5

/*calculate candidate tile to execute... */

tileN+1 = groupN+1 -
∑N

i=1 tilei;6

/*for each active thread transmission

direction... */

foreach
−→
dir ∈ S~p,~t do7

/*...pack communication data... */

Pack( ~dir,groupN+1 − 1,~p,~t);8

/*...and send to neighbor process */

MPI Isend(~p +
−→
dir,tag(~t));9

/*for each active thread reception

direction... */

foreach
−→
dir ∈ R~p,~t do10

/*...receive data from neighbor process

*/

MPI Irecv(~p−
−→
dir,tag(~t));11

/*compute if valid tile */

if 1 ≤ tileN+1 ≤
⌈

Z
z

⌉

then12

Compute(
−→
tile);13

/*complete pending communication */

MPI Waitall ;14

/*for each active thread reception

direction... */

foreach
−→
dir ∈ R~p,~t do15

/*...unpack communication data */

Unpack(
−→
dir,groupN+1 + 1,~p,~t);16

/*synchronize threads for next time step */

#pragma omp barrier17
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responds to the set of valid transmission directions for

thread ~t of the owner process ~p. In particular, if
−→
dir ∈ S~p,~t,

then data computed by thread ~t need to be sent to pro-

cess ~p +
−→
dir, assuming ~p denotes a non-boundary process.

Similarly, if
−→
dir ∈ R~p,~t, then process ~p needs to receive

from its neighbor process ~p −
−→
dir, in order to satisfy de-

pendencies related to data computed by thread ~t of ~p. As
all threads call message passing primitives based on the
sets S~p,~t, R~p,~t, the parameter tag() emphasizes the role of
the message tag in matching communicating thread pairs.
Note also that we will not be considering load balancing
for the coarse-grain multiple case, as this hybrid imple-
mentation primarily aims to be as simple as possible, by
benefiting from the full multi-threading support provided
by the message passing library. For the sake of simplic-
ity, we shall refer to this programming model as multiple
hybrid for the rest of this article.

5 LOAD BALANCING FOR THE HYBRID MODEL

Since most existing message passing libraries allow only
the master thread to perform inter-process communica-
tion, the coarse-grain hybrid models suffer from intrinsic
load imbalance and require an appropriate computation
distribution scheme in order to achieve good performance.
In the opposite case, the master thread will inevitably have
to perform a larger fraction of work compared to the other
threads, that is, if equal computational loads are assigned
indiscriminately to all threads.

The hyperplane scheduling scheme enables a more effi-
cient load balancing between threads: Since the compu-
tations of each time step are essentially independent of
the communication data exchanged at that step, the for-
mer can be arbitrarily distributed among threads. Thus,
it would be meaningful for the master thread to assume a
smaller part of computational load, so that the total com-
putation and the total communication associated with the
owner process is evenly distributed among all threads.

In order to achieve this, we propose both a static and
a dynamic (adaptive) approach for the calculation of the
balancing factor(s). According to the static approach, load
balancing is applied at compile time based upon a theoret-
ical estimation of the relative communication vs computa-
tion cost of a specific algorithm on the particular underly-
ing infrastructure. Only fundamental system characteris-
tics (average iteration execution time, network bandwidth
and latency) are included in this analysis, so as to keep the
static approach applicable in practice. On the other hand,
the dynamic alternative makes for a more obtrusive ap-
proach, where the relative communication vs computation
cost of the algorithm is sampled at run-time, and no prior
assumptions are made regarding the theoretical behaviour
of the underlying system.

In this Section, we shall refer to the three proposed load
balancing schemes, namely two variations of the static ap-

proach (constant and variable load balancing), as well as
the dynamic, adaptive load balancing methodology.

5.1 Static Balancing

We have implemented two alternative static load balancing
schemes. The first one (constant balancing) requires the
calculation of a constant balancing factor, which is com-
mon for all processes, irrespective of the selected process
topology. For this purpose, we consider a non-boundary
process, that performs communication across all N process
topology dimensions, and theoretically determine the com-
putational fraction of the master thread, that equalizes tile
execution times on a per thread basis. We then apply this
constant balancing factor to all processes and quantita-
tively specify how much less computational load should be
assigned to the master thread, so as to achieve the equal-
ization of the total tile execution times of all threads.

The second scheme (variable balancing) requires further
knowledge of the process topology, and ignores communi-
cation directions cutting the iteration space boundaries,
since these do not result to actual message passing. Ac-
cording to the variable balancing scheme, we compute a
different balancing factor for boundary and non-boundary
processes, since the former are from the communication
perspective less heavily burdened than the latter. Depend-
ing on the position of its owner process in the topology,
each master thread is assigned a different balancing factor,
as opposed to the constant balancing scheme, where the
same balancing factor was applied to all master threads.

For both cases (constant and variable balancing), the
balancing factor(s) can be obtained by the following
lemma:

Lemma 1. Let X1×· · ·×XN ×Z be the iteration space of
an N+1-dimensional iterative algorithm, that imposes data
dependencies [d1, . . . , 0]

T
, . . . , [0, . . . , dN+1]

T
. Let P =

P1 × · · · × PN be the process topology and T the number
of threads available for the parallel execution of the hybrid
funneled implementation of the respective tiled algorithm.
The overall completion time of the algorithm is minimal
if the master thread assumes a portion bal

T
of the process’s

computational load, where

bal = 1−
T − 1

tcomp

(

Xz
P

)

N
∑

i=1
i∈S~p

tcomm

(

diPiXz

XiP

)

(1)

tcomp(x) The computation time required for x iterations

tcomm(x) The transmission time of an x-sized message

z The tile height for each execution step

S~p Valid data transmission directions of process ~p

X Equal to
∏N

i=1 Xi

The proof of the lemma is presented in the Appendix.
We assume the computation time tcomp to be a linear
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function of the number of iterations, that is, we assume
tcomp(ax) = atcomp(x). Note that if condition i ∈ S~p is
evaluated independently for each process, variable balanc-
ing is enforced, as each communication term is only in-
cluded in the sum of (1) as long as it contributes to mes-
sage passing along the particular dimension for the specific
process. If the above check is omitted, (1) delivers the con-
stant balancing factor.

The constant balancing scheme only requires knowledge
of the underlying computational and network infrastruc-
ture, but also tends to overestimate the communication
load for boundary processes. On the other hand, the vari-
able balancing scheme can be applied only after selecting
the process topology, as it uses that information to calcu-
late a different balancing factor for each process. Accord-
ing to the variable scheme, the balancing factor is slightly
smaller for non-boundary processes. However, as the ac-
tive communication directions decrease for boundary pro-
cesses, the balancing factor increases, so as to preserve the
desirable thread load balancing.

X1

X2

87% 87% 87% 92%

95% 95% 95% 100%

Algorithm X1=4X2 , [(d,0)T , (0,d)T]

Z

8 processes (4x2)
2 threads/process (2x1)

thread 0                     thread 1process (0,0)

process (3,1)

Figure 2: Variable balancing for 8 processes × 2 threads
and 3D algorithm with iteration space X1×X2×Z,X1 =
4X2

Fig. 2 demonstrates the variable load balancing scheme
for a 3D tiled algorithm, that has been mapped onto a 2D
virtual process topology on a dual SMP cluster. The dif-
ferent balancing factors have been computed by applying
(1), where functions tcomp() and tcomm() have been approx-
imated as in equations (4) and (5) of Section 6, whereas
N = 2, P = 8, P1 = 4, P2 = 2, T = 2, X1 = 4X2, d1 = d2 =
d. Generally, a factor bal, 0 ≤ bal ≤ 1, for load balancing T

threads implies that the master thread assumes bal
T

of the
process’s computational share, while each other thread is
assigned a fraction of T−bal

T (T−1) of that share. Consequently,

larger balancing factors tantamount to the master thread
assuming larger fractions of the process’s computational
load, with a balancing factor of 100% meaning equal dis-
tribution of that load among all existing threads (no bal-
ancing). For instance, since process (0, 1) does not have
to perform communication along dimension X2, its master
thread assumes a greater balancing factor (95% vs 87%)
compared to the master thread of process (0, 0), which has
to perform message passing communication along both X1

and X2 directions. Moreover, process (3, 1) will not be
transmitting any communication data, hence no balancing
is applied to its master thread.

Clearly, the most important aspect for the effectiveness
of both static load balancing schemes is the accurate archi-
tectural modeling of both the underlying infrastructure, as
well as its basic performance parameters, such as the sus-
tained network bandwidth and latency, and the require-
ments imposed by the specific algorithm in terms of pro-
cessing power. In order to preserve the simplicity and ap-
plicability of the methodology, we avoid complicated in-
depth software and hardware modeling, and adopt simple,
yet partly crude, approximations for the system’s structure
and behavior. A dynamic scheme adopting an adaptive,
run-time balancing approach, could potentially overcome
some of the drawbacks associated with static balancing and
its approximations, and is hence considered next.

5.2 Dynamic Balancing

Instead of applying thread load balancing a priori, accord-
ing to a particular static modeling of application-system
performance, it is possible to adaptively calculate appro-
priate balancing factors, by slightly restructuring the hy-
brid coarse-grain paradigm. Under a more obtrusive ap-
proach, each thread can time its computation and commu-
nication performance at run-time, so that load balancing
is applied mainly based upon that information, and by fur-
ther relying on a minimum set of assumptions. Obviously,
as with most dynamic, obtrusive programming approaches,
adaptive balancing incurs an additional profiling and pro-
cessing overhead, mainly due to the insertion of timers,
though only for a relatively short part of the code.

Suppose we apply an initial factor bal for the balancing
of the T threads of a specific process. bal can be computed
by using either of the static load balancing techniques men-
tioned above. Assuming P processes, our intention is to
sample program execution for more than PT time steps, so
that the execution wavefront reaches the most distant pro-
cess, as we would like to time communication performance
in a full parallel pipeline state. Based on the information
gathered at the sampling period, a more appropriate load
balancing factor bal′ can be applied for the rest of the al-
gorithm, according to the following lemma:

Lemma 2. Assuming a balancing factor bal and T

threads, let tmcomp, tmcomm be the average tile computation
and communication times of the master thread, profiled at
run-time. A more efficient balancing factor bal′ can be
computed using the following expression:

bal′ = 1− bal
T − 1

T

tmcomm

tmcomp

(2)

The proof of Lemma 2 is presented in the Appendix. It
should be noted that tmcomm refers to the non-overlapped
communication time of the master thread, that is, exclud-
ing any DMA-driven communication overlapped with com-
putation, hence it can easily be profiled. In practice, the
coarse-grain model depicted in Alg. 4 is unfolded into two
parts, the sampling period and the main execution period.
During the sampling period, the initial balancing factor bal
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is applied, and the master thread profiles its partial tile
computation and communication times (tm

comp and tmcomm,
respectively), that approximately constitute the total tile
execution time. Based on this measurements, the new bal-
ancing factor bal′ is computed, and further applied for the
main execution period of the program.

The adaptive balancing approach is expected to incur
some additional performance penalty, mainly due to the
timing requirements and re-balancing process. More im-
portantly, it adopts two basic assumptions: first, that the
communication time is invariant to the computation dis-
tribution between threads, and second that the computa-
tion time is proportional to the number of iterations. The
first assumption misrepresents the potential of overlapping
computation and communication, while the second fails to
consider cache effects. However, these simplifications en-
sure the generality and applicability of the proposed dy-
namic balancing scheme. In fact, the dynamic scheme re-
quires even less input to be supplied by the user concern-
ing application and platform characteristics, as it basically
extracts that information by monitoring and profiling pro-
gram execution performance at run-time.

6 EXPERIMENTAL RESULTS

In order to test the efficiency of the proposed load bal-
ancing schemes, we compared the performance of all pro-
posed programming models (message passing, fine-grain
hybrid, coarse-grain hybrid) against two kernel bench-
marks, namely Alternating Direction Implicit integration
(ADI), as well as a second order backward discretization of
the Diffusion Equation (DE). ADI is a stencil computation
used for solving partial differential equations (Karniadakis
and Kirby (2002)). Essentially, ADI is a simple three-
dimensional perfectly nested loop algorithm, that imposes
unitary data dependencies across all three space directions.
On the other hand, DE is a similar three-dimensional al-
gorithm, that can be derived from the following unsteady
diffusion PDE with the aid of backward discretization:

∂Θ

∂t
= ∇2Θ

Θ(x, y, 0) = f(x, y) (3)

Θ(x, y, t) = g(x, y, t) on ∂Ω

Both kernels have an iteration space of X1 × X2 × Z,
where Z is considered to be the longest algorithm dimen-
sion. Furthermore, both applications are suitable for the
performance evaluation of all parallel programming models
and techniques discussed here, as they are typical repre-
sentatives of nested loop algorithms and comply with our
target algorithmic model. More importantly, they impose
communication in all three iteration space dimensions, and
thus facilitate the comparison of the various programming
models in terms of communication performance. In fact,
in the DE kernel, a process transmits three times the com-
munication volume along each iteration space dimension

compared to ADI, therefore the relative performance of the
two kernels enables scalability evaluation of the different
programming models in respect to the inherent communi-
cation needs of a specific application.

We use MPI as the message passing library and OpenMP
as the multi-threading API. Our experimental platform is
an 8-node Pentium III dual-SMP cluster interconnected
with 100 Mbps FastEthernet. Each node has two Pentium
III CPUs at 800 MHz, 256 MB of RAM, 16 KB of L1 I
Cache, 16 KB L1 D Cache, 256 KB of L2 cache, and runs
Linux with 2.4.26 kernel. For the support of OpenMP di-
rectives, we use Intel C++ compiler v.8.1 with the follow-
ing optimization flags: -O3 -mcpu=pentiumpro -openmp

-static. We also used two MPI implementations, namely
the popular open-source MPICH library (v.1.2.6), as well
as the proprietary ChaMPIon/Pro MPI library (v.1.1.1).
Both MPI libraries have been appropriately configured,
in order to perform SMP intra-node communication effi-
ciently (e.g. through SYS V shared memory). MPICH
provides at most a funneled thread support level, while
ChaMPIon/Pro is fully thread-safe, and will be mainly
used for the performance comparison of the multiple hy-
brid implementation with the other hybrid alternatives.
Some fine-tuning of the MPICH communication perfor-
mance for our experimental platform indicated using a
maximum socket buffer size of 104KB, so the respective
environment variable was appropriately set to that value
for all cluster nodes.

Under the MPICH library, we are able to fully exploit
our cluster architecture, as we will be using 16 processes
for the pure message passing experiments, and 8 processes
with 2 threads per process for all hybrid programs. With
the ChaMPIon/Pro library, the number of available li-
censes compelled us to use a maximum of 8 processes
for the message passing case, and only 4 processes for
the hybrid implementations, with each process spawning
2 threads. Furthermore, all experimental results are aver-
aged over three independent executions for each case.

Regarding static thread load balancing, a simplistic ap-
proach is adopted in order to model the behavior of the
underlying infrastructure, so as to approximate quantities
tcomp and tcomm of (1). As far as tcomp is concerned, we as-
sume the computational cost involved with the calculation
of x iterations to be x times the average cost required for
a single iteration. On the other hand, the communication
cost is considered to consist of a constant start-up latency
term, as well as a term proportional to the message size,
that depends upon the sustained network bandwidth on
application level. Formally, we define

tcomp(x) = xtcomp(1) (4)

tcomm(x) = tstartup +
x

Bsustained

(5)

Since our primary objective was preserving simplicity
and applicability in the modeling of environmental param-
eters, we intentionally overlooked at more complex phe-
nomena, such as cache effects or precise communication
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modeling. For instance, we ignored cache effects in the es-
timation of the computation cost, as we intended to avoid
performing a memory access pattern analysis of the tiled
application in respect to the memory hierarchy configura-
tion of the underlying architecture. Also, a major diffi-
culty we encountered was modeling the TCP/IP commu-
nication performance and incorporating that analysis in
our static load balancing scheme. Assuming distinct, non-
overlapping computation and communication phases and
relatively high sustained network bandwidth allowed us to
bypass this restriction. However, this hypothesis underes-
timates the communication cost for short messages, since
these are mostly latency-bound and sustain relatively low
throughput. On the other hand, it overestimates the re-
spective cost in the case of longer messages, where DMA
transfers alleviate the CPU significantly. For our analysis,
we considered tcomp(1) = 288nsec, tstartup = 107usec and
Bsustained = 100Mbps.

Finally, as regards adaptive balancing, we considered a
duration of 2PT time steps for the sampling period. For
instance, given P = 8 and T = 2, this corresponds to 32
time steps, while each process will be executing 82 to 8k
tiles, depending on the tile height (z ranges from 2 to 200,
while dimension Z is always equal to 16k, for all iteration
spaces). Note that for some cases, the duration of the
sampling period is not negligible, compared to the main
execution period.

6.1 ADI Integration

Initially, we performed an overall performance comparison
of all proposed programming models against the ADI ker-
nel, by using both the MPICH and the ChaMPIon/Pro
MPI implementations. It should be noted that although
this comparison may be useful towards the efficient usage
of SMP clusters, it cannot be generalized beyond the cho-
sen hardware-software combination, as it largely depends
upon the comparative performance of the specific program-
ming APIs (MPICH, ChaMPIon/Pro, OpenMP support
on Intel compiler), as well as how efficiently the MPI li-
brary supports multi-threaded programming.

We tried five different iteration spaces for ADI, in or-
der to investigate the performance variation of each model
for different process topologies. For each iteration space
and programming model, we selected among all feasible
cartesian process topologies the one that minimizes the
total execution time. The selected topologies for each case
are depicted in Table 1. The variety of iteration spaces
and the potential for multiple alternative process topolo-
gies eloquently demonstrates that the comparison of the
pure message passing model with the hybrid approach is
a non-trivial issue, even from the communication perspec-
tive. Generally, the total communication volume is re-
duced when assuming the hybrid approach, however this
reduction is not necessarily proportional to the number
of threads T , but also depends on the particular process
topology. For instance, considering the iteration space
32 × 256 × 16k, we expect the process topology assumed
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Figure 3: Comparison of hybrid models (ADI integration,
8 dual SMP nodes, MPICH, various iteration spaces)

with the hybrid implementations to be quite beneficial, as
it eliminates the need for communication across the long
X2 = 256 iteration space dimension. On the other hand,
for the iteration space 256 × 256 × 16k, the communica-
tion data is reduced by approximately 33%, while there
are only half as many entities to perform message passing
under funneled multi-threading support (16 processes in
the pure message passing model vs 8 master threads in the
hybrid alternatives). Thus, even theoretically, the advan-
tages of the hybrid approach may be diminished without
proper thread load balancing.

iteration space message passing hybrid
16× 256× 16k 1× 16 1× 8
32× 256× 16k 2× 8 1× 8
64× 256× 16k 2× 8 1× 8
128× 256× 16k 2× 8 2× 4
256× 256× 16k 4× 4 2× 4

Table 1: Selected process topologies for the message pass-
ing and for the hybrid models

The overall experimental results for ADI integration and
the above iteration spaces are depicted in Fig. 3 (MPICH)
and Fig. 5 (ChaMPIon/Pro). These results are normalized
in respect to the message passing execution times, so as to
allow for straightforward quantitative comparison. Fur-
thermore, granularity measurements for various iteration
spaces are depicted in Fig. 4 for the MPICH library.

Following conclusions can be drawn from the thorough
investigation of the obtained performance measurements
(MPICH library):

• Unoptimized hybrid parallelization (fine-grain, coarse-
grain unbalanced) is often worse than the pure mes-
sage passing approach. If no load balancing is applied
to the hybrid model, its relative performance com-
pared to the pure message passing model exclusively
depends on the appropriateness of the selected pro-
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cess topology, given a specific algorithm and iteration
space. As anticipated, the hybrid implementation per-
forms better for the 32 × 256 × 16k iteration space,
even without load balancing, as the assumed process
topology of the hybrid implementation eliminates the
largest fraction of the message passing communication
required. In almost all other cases, the pure message
passing model performed better than the unbalanced
hybrid implementations.

• The coarse-grain hybrid model generally performs bet-
ter than the fine-grain alternative for most iteration
spaces. However, the coarse-grain model is not al-
ways more efficient than its fine-grain counterpart
(e.g. 128 × 256 × 16k, 256 × 256 × 16k). This obser-
vation reflects the fact that the poor load balancing
of the simple coarse-grain model diminishes its advan-
tages compared to the fine-grain alternative.

• When applying constant static balancing, in some
cases the balanced coarse-grain implementation is
less effective than the unbalanced alternatives (e.g.,
16×256×16k, 32×256×16k). This can be attributed
both to inaccurate theoretical modeling of the system
parameters for the calculation of the balancing factors,
as well as to the inappropriateness of the constant bal-
ancing scheme for boundary processes. Generally, the
constant balancing approach performs well for rela-
tively symmetric process topologies, with few of the
processes lying at the topology boundary.

• When applying variable static balancing, the coarse-
grain hybrid model was able to deliver superior perfor-
mance to the message passing alternative in all cases.
The performance improvement lies in the range of 2-
12%, also depending upon the selected process topol-
ogy in each case.

• The same performance improvement is also observed
for the adaptive dynamic balancing approach, thus
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confirming that the required information for the ap-
plication of efficient load balancing can be obtained at
run-time, with minimal overhead. Overall, the vari-
able static and the adaptive dynamic balancing tech-
niques have delivered the best parallel performance
in almost all cases, and have proven to be the most
reliable and efficient parallelization approaches.

The granularity results in Fig. 4 reveal that these two
balancing techniques (variable, adaptive) perform better
than any other implementation for almost all granulari-
ties. Some performance degradations observed at certain
threshold values of the tile height z can be ascribed to the
transition from the eager to the rendezvous MPICH mes-
sage protocol, occurring at 128000 bytes (for instance, see
Fig. 4(c) at z = 125). Depending on the message size,
MPICH resorts to three different message passing commu-
nication protocols, namely short, eager and rendezvous,
each assuming a different approach in terms of intermedi-
ate buffering and/or receiver notification. Generally, there
are certain trade-offs when transitioning between these
protocols, that mainly correlate sender-receiver synchro-
nization with the overhead of intermediate buffering, there-
fore performance implications should not be surprising.

The performance evaluation of all models with the aid
of the ChaMPIon/Pro implementation mainly aimed at
providing additional insight for the multiple hybrid imple-
mentation, since we simply repeated the same experiments
on a smaller scale. Fig. 5 indicates that an appropriately
balanced hybrid funneled implementation is usually even
slightly better than the multiple hybrid implementation,
confirming our intuition that appropriate load balancing
could mitigate the limited multi-threading support and
also avoid the overhead associated with ensuring thread
safety of the message passing library. As many popu-
lar message passing libraries currently provide only lim-
ited multi-threading support, appropriately load balanc-
ing the funneled hybrid model arises as a feasible and effi-
cient parallel programming alternative. In addition, even
if the thread safety of the message passing library allows
all threads to perform inter-node communication, the un-
derlying network infrastructure might be too restrictive for
the efficient utilization of this feature (e.g., one NIC to be
used by multiple threads).

6.2 Diffusion Equation

We conducted similar experimental evaluation for the DE
kernel, by using both the MPICH and the ChaMPIon/Pro
libraries. The results are summarized in Fig. 6 for the
MPICH library, and in Fig. 7 for the ChaMPIon/Pro im-
plementation. In all cases, the execution times have been
normalized to the message passing model.

We have observed similar behavior as in the ADI bench-
mark. Variable and adaptive balancing deliver the best
results, by providing a performance improvement in the
range 3-22%. The relative performance improvement in
the DE kernel is significantly higher in all iteration spaces
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compared to ADI, reflecting the fact that hybrid pro-
gramming can be particularly beneficial in algorithms with
high communication to computation demands. The reader
should also note that although DE imposes more communi-
cation overhead than ADI, it is still heavily computation-
bound. Since the advantage of hybrid programming lies
in the efficient utilization of the underlying architecture
for communication purposes, it could be even more suit-
able for the parallelization of communication-bound ap-
plications, as long as these do not saturate the available
memory bandwidth.

Fig. 7 further confirms that multiple hybrid paralleliza-
tion is not more efficient than either the variably or the
adaptively balanced coarse-grain funneled hybrid imple-
mentation, and even leads to slight performance degrada-
tion in the 64×256×16k iteration space. Also, the relative
performance improvement is significantly higher for the DE
kernel (more than 5% in all cases) in comparison to ADI
(around 3% for the various iteration spaces), thus the same
qualitative behavior observed at the MPICH experiments
is exhibited also for the ChaMPIon/Pro library, though on
a smaller scale.

7 CONCLUSIONS

This paper discusses load balancing issues regarding hy-
brid parallelization of tiled loop algorithms. We propose
three load balancing schemes, namely two static techniques
(constant, variable), as well as a dynamic (adaptive) one.
Static balancing is based on application-system modeling,
so as to determine a suitable task distribution between
threads. On the other hand, dynamic balancing extracts
similar information at run-time, by profiling the actual
application performance and re-evaluating the initial load
balancing strategy. We have compared both message pass-
ing and hybrid implementations, and demonstrated the
performance improvements that can be attained by re-
sorting to an appropriately balanced coarse-grain hybrid
implementation.

The experimental evaluation has confirmed that for the
algorithms considered here unoptimized hybrid paralleliza-
tion may perform poorly, even worse than the monolithic
message passing paradigm. Moreover, coarse-grain SPMD-
like hybrid parallelization does not always outperform the
fine-grain incremental alternative, as the poor load bal-
ancing of the former diminishes its relative advantages in
respect to the latter (e.g. higher parallelization efficiency,
overlapping computation with communication, no thread
re-initialization overhead). However, when applying vari-
able or adaptive load balancing, the coarse-grain funneled
hybrid model was able to deliver superior performance in
respect to message passing parallelization, and even exhibit
similar performance to the coarse-grain multiple alterna-
tive, but without requiring additional thread-safe support
from the message passing library.

Generally, the performance improvements are propor-
tional to the intrinsic communication demands of the par-

allelized algorithm, and also depend on the efficiency of the
process topology assumed in each case. Conclusively, effi-
cient load balancing can effectively mitigate limited multi-
threading support, and delivers superior performance com-
pared to standard message passing implementations. All
models that have been proposed can easily be adopted to
more generic parallelization techniques, as we have empha-
sized on the elements of applicability and simplicity.

A Static Load Balancing

Proof. For the sake of simplicity, and without loss of gen-
erality, we assume that all divisions result to integers, in
order to avoid over-complicating our equations with ceil

and floor operators. Thus, each process will be assigned
Z
z

tiles, each containing Xz
P

iterations. Furthermore, under
a balancing factor bal, the master thread will assume the
execution of a fraction bal

T
of the process’s computational

load, while each of the other T −1 threads will be assigned
a fraction of T−bal

T (T−1) of the remaining computations. Note

that under the funneled hybrid model, only the master
thread is allowed to perform inter-node communication,
and should therefore take care of both its own communi-
cation data, as well as the communication data of the other
threads. The overall completion time of the algorithm can
be approximated by multiplying the total number of exe-
cution steps with the execution time required for each tile
(step) ttile. It holds

ttile = max{tmtile, t
o
tile} (6)

where

tmtile = tcomp

(

bal

T

Xz

P

)

+

N
∑

i=1
i∈S~p

tcomm

(

diPiXz

XiP

)

(7)

the tile execution time of the master thread, while

totile = tcomp

(

T − bal

T (T − 1)

Xz

P

)

(8)

the tile execution time of a non-master thread.
In order to minimize the overall completion time, or

equivalently the execution time for each tile (since the
number of execution steps does not depend on the load
distribution between threads), tm

tile must be equal to totile.
If this is not the case, that is if tm

tile 6= totile, there can
always be a more efficient load balancing strategy, by as-
signing more work to the more lightly burdened thread(s).
Consequently, for minimal completion time under the as-
sumed mapping, it holds

tmtile = totile (9)

Assuming that the computation time tcomp is a linear func-
tion of the number of iterations, that is, tcomp(ax) =
atcomp(x), (7), (8) and (9) can be easily combined to de-
liver (1).
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B Dynamic Load Balancing

Proof. We assume that the initial thread load balancing is
in general non-optimal in practice, that is, if tm

comp, tmcomm

the average tile computation and communication times of
the master thread and tocomp the average tile computation
time of a non-master thread, it holds

tmtile 6= totile ⇒

tmcomp + tmcomm 6= tocomp

Such suboptimal load balancing between the threads can
be ascribed to inaccurate theoretical system modeling, as
well as to the various approximations in performance esti-
mation. Our goal is to determine a new balancing factor
bal′, such that the average tile execution times become
equalized for all threads, that is

t′
m
comp + t′

m
comm = t′

o
comp (10)

We assume that the time required for the computation of
a tile is proportional to the number of iterations associated
with that tile. Formally, we assume

tmcomp ∼
bal

T

∏N
i=1 Xiz

P
(11)

tocomp ∼
T − bal

T (T − 1)

∏N
i=1 Xiz

P
(12)

Because of (11), it holds

t′
m
comp =

bal′

bal
tmcomp (13)

and due to (12), it also holds

t′
o
comp =

T − bal′

T − bal
tocomp (14)

Moreover, assuming communication time invariance, we
approximate

t′
m
comm ' tmcomm (15)

By combining (13), (14) and (15), (10) delivers

bal′

bal
tmcomp + tmcomm =

T − bal′

T − bal
tocomp ⇒

bal′ =
balT tocomp − bal(T − bal)tmcomm

(T − bal)tmcomp + baltocomp

(16)

By further approximating tocomp by T−bal
bal(T−1) t

m
comp because

of (11) and (12), we can easily deduce (2)
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