
Code Generation Methods for Tiling Transformations

GEORGIOS GOUMAS, MARIA ATHANASAKI AND NECTARIOS KOZIRIS

National Technical University of Athens

Dept. of Electrical and Computer Engineering

Computing Systems Laboratory

E-mail: �goumas, mathan, nkoziris�@cslab.ece.ntua.gr

Tiling or supernode transformation has been widely used to improve locality in multi-level
memory hierarchies, as well as to efficiently execute loops onto parallel architectures. How-
ever, automatic code generation for tiled loops can be a very complex compiler work due to
non-rectangular tile shapes and arbitrary iteration space bounds. In this paper, we first survey
code generation methods for nested loops which are transformed using non-unimodular trans-
formations. All methods are based on Fourier-Motzkin (FM) elimination. Next, we consider
and enhance previous work on rewriting tiled loops by considering parallelepiped tiles and arbi-
trary iteration space shapes. In order to generate tiled code, all methods first enumerate the tiles
containing points within the iteration space, and second, sweep the points within each tile. For
the first, we extend previous work in order to access all tile origins correctly, while for the latter,
we propose the transformation of the initial parallelepiped tile iteration space into a rectangular
one, so as to generate code efficiently with the aid of a non-unimodular transformation matrix
and its Hermite Normal Form (HNF). The resulting systems of inequalities are much simpler
than those appeared in bibliography; thus their solutions are more efficiently determined using
the FM elimination. Experimental results which compare all presented approaches, show that
the proposed method for generating tiled code is significantly accelerated, thus rewriting any
�-D tiled loop in a much more efficient and direct way.

Keywords: loop tiling, supernodes, non-unimodular transformations, Fourier- Motzkin elimi-
nation, code generation.

1. INTRODUCTION

Linear loop transformations such as reversal, interchanging, skewing, wavefront trans-
formation etc. are extensively used to efficiently execute nested loops by restructuring
the loop execution order. Such transformations can be represented by non-singular ma-
trices, either unimodular, or non-unimodular ones. When unimodular transformations are
concerned, code generation is simply restricted to the calculation of the lower and upper
bounds of the transformed loop. When dealing with non-unimodular transformations, fur-
ther attention needs to be paid, in order to skip the holes that are created in the transformed
iteration space. In this case, the overall complexity is aggravated by the calculation of the
exact integer lower and upper bounds, as well as by the calculation of the steps of the new
loop variables. Researchers have solved the problem of code generation for linear loop

transformations using the Fourier-Motzkin (FM) elimination method and the properties of
the Hermite Normal Form (HNF) of the transformation matrix. Ramanujam in [1] and [2]
used the HNF of the transformation matrix � and Hessenberg matrices in order to correct
the bounds that result from the application of Fourier-Motzkin to the transformed iteration
space. The use of the HNF of � is also proposed by Xue in [3] and Fernandez et al. in [4].
Li and Pingali in [5] follow a slightly different approach which is based on the decompo-
sition of transformation matrix � to the product of its HNF �� and a unimodular matrix � .
� transforms the original iteration space to an auxiliary iteration space, whose bounds are
calculated using Fourier-Motzkin. In the sequel, the bounds of the target iteration space
are easily obtained from the bounds of the auxiliary iteration space. The strides of the loop
variables in all previous works are obtained from the elements in the diagonal of the HNF of
the transformation matrix. Note that all code generation methods use the Fourier-Motzkin
elimination method which is extremely complex, as it depends doubly exponentially on the
number of nested loops. Fortunately, in practical problems the loop depth is kept small,
making code generation for linear loop transformations feasible.

Tiling or supernode partitioning is another loop transformation that has been widely
used to improve locality in multi-level memory hierarchies, as well as to efficiently execute
loops onto distributed memory architectures. Supernode transformation groups neighbor-
ing iterations together, in order to form a large and independent computational unit, called
tile or supernode. Supernode partitioning of the iteration space was first proposed by Irigoin
and Triolet in [6]. They introduced the initial model of loop tiling and gave conditions for
a tiling transformation to be valid. Tiles are required to be atomic, identical, bounded and
their union spans the initial iteration space. In their paper ([7]), Ramanujam and Sadayap-
pan showed the equivalence between the problem of finding a set of extreme vectors for
a given set of dependence vectors and the problem of finding a tiling transformation �
that produces valid, deadlock-free tiles. Since the tiling planes � � are defined by a set of
extreme vectors, they gave a linear programming formulation for the problem of finding
optimal shape tiles (thus determining optimal �) that reduces communication. Boulet et
al. in [8] and Xue in [9] and [10] used a communication function that has to be minimized
by linear programming approaches.

When executing nested loops on parallel architectures, the key issue in loop partitioning
to different processors, is to mitigate communication overhead by efficiently controlling the
computation to communication ratio. In distributed memory machines, explicit message
passing incurs extra time overhead due to message startup latencies and data transfer delays.
In order to eliminate the communication overhead, Shang [11], Hollander [12] and others,
have presented methods for dividing the index space into independent sets of iterations,
which are assigned to different processors. If the rank of the dependence vector matrix is
�� � �, the �-dimensional loop can always be transformed to have, at maximum, � � � �

outermost FOR-ALL loops [13]. However, in many cases, independent partitioning of
the index space is not feasible, thus data exchanges between processors impose additional
communication delays. When fine grain parallelism is concerned, several methods were
proposed to group together neighboring chains of iterations [14], [15], while preserving
the optimal hyperplane schedule [16], [17], [18].

When tiling for exploiting parallelism, neighboring iteration points are grouped together
to build a larger computation node, which is executed by a processor. Tiles have much

larger granularity than single iterations, thus reducing synchronization points and alleviat-
ing overall communication overhead. Data exchanges are grouped and performed within a
single message for each neighboring processor, at the end of each atomic supernode exe-
cution. Hodzic and Shang [19] proposed a method to correlate optimal tile size and shape,
based on overall completion time reduction. They applied the hyperplane transformation
to loop tiles and generated a schedule where the objective is to reduce the overall time by
adjusting the tile size and shape appropriately. Their approach considers a schedule where
each processor executes all tiles along a specific dimension, by interleaving computation
and communication phases. All processors first receive data, then compute and finally send
result data to neighbors in explicitly distinct phases, according to the hyperplane schedul-
ing vector. In [20] the overall execution time for tiled nested loops was further minimized
through communication and computation overlapping. The overall schedule resembles like
a pipelined datapath where computations are not any more interleaved with send and re-
ceives to non-local processors, but partly overlapped using a modified hyperplane time
schedule. Tile size and shape are thus determined to reduce overall completion time under
this new time scheduling scheme.

Although tiling as a loop transformation is extensively discussed, only rectangular tiling
is used in real applications. However, rectangular tiling is not always legal or, as we men-
tioned above, communication criteria may suggest the use of non-rectangular tiles. Hodzic
and Shang in [21] have shown that non-rectangular tile shapes can also lead to smaller
total execution times due to more efficient scheduling schemes. On the other hand, non-
rectangular loop nests very commonly appear in numerical applications. In addition, a
non-rectangular iteration space may arise when a loop transformation such as skewing is
applied to an original rectangular iteration space. This means that, in the general case, we
have to deal with non-rectangular shapes in tiles and iteration spaces, where code gener-
ation is far from being straightforward and efficient. This is because tiling is not a linear
loop transformation, which means that previous work on code generation for linear trans-
formations cannot be directly applied on tiling. Loop rewriting in the case of tiling involves
the application of the tiling transformation� , being found by the above optimal loop tiling
methods, to produce an equivalent nested loop with �� depth. The innermost �-D nests are
representing iterations within a tile and are sequentially executed, whereas the outermost
�-D nests are for-across loops executed in parallel by different processors under a time
synchronization and space scheduling scheme. The objective here is to generate the outer-
most �-D loop nests that scan all tiles and the innermost �-D loop nests that scan all points
within a tile by calculating the correct index strides and loop bounds in the transformed tile
space. Thus, due to the special characteristics of tiling described above, Fourier-Motzkin
elimination has to be applied in larger systems of inequalities compared to those formed
by usual linear transformations, making methods so far presented impractical for problems
that are more complex, as in the case of non-rectangular tiles and non-rectangular spaces.

Tang and Xue in [22] have presented a method for generating SPMD code for tiled it-
eration spaces. They addressed issues such as both computation and data distribution and
message passing code generation. Although this is a complete approach resulting in a very
straightforward loop code, it is limited only to rectangular tiles. Another approach for gen-
erating code for tiled iteration spaces was introduced by Ancourt and Irigoin in [23]. In this
paper, non-rectangular tiles and iteration spaces are considered as well. However, due to the

fact that tiles have parallelepiped boundary surfaces, the problem of calculating the exact
transformed loop bounds is formulated as a large system of linear inequalities. These in-
equalities are formed first to calculate the exact bounds for every tile execution and second,
to find all iterations inside each tile. The authors use Fourier-Motzkin elimination to solve
the problem, but the size of the formed systems of inequalities makes Fourier-Motzkin
elimination very time-consuming for loop nests with depth greater than two or three. Note
that although sophisticated implementations of Fourier-Motkzin have been presented (e.g.
see [24]), the method remains an extremely complex one leading to impractical compilation
times in Ancourt and Irigoin’s approach.

In this paper, we present an efficient way to generate code for tiled iteration spaces,
considering both non-rectangular tiles and non-rectangular iteration spaces. Our goal is
to reduce the size of the resulting systems of inequalities and to restrict the application of
Fourier-Motzkin elimination to as fewer times as possible. We divide the main problem into
the subproblems of enumerating the tiles of the iteration space and sweeping the internal
points of every tile. For the first problem, we continue previous work concerning code
generation for non-unimodular linear transformations in [1] and [2]. Tiling was used as
an example to compute loop bounds, but the method proposed fails to enumerate all tile
origins exactly. We adjust this method in order to access all tiles. As far as sweeping
the internal points of every tile is concerned, we propose a novel method which uses the
properties of non-unimodular transformations. The method is based on the observation that
tiles are identical and that large computational complexity arises when non-rectangular tiles
are concerned. To handle this fact, we first transform the parallelepiped (non-rectangular)
tile (Tile Iteration Space-���) into a rectangular one (Transformed Tile Iteration Space-
����), sweep the derived ���� and use the inverse transformation in order to access
the original points. The results are adjusted in order to sweep the internal points of all
tiles, taking also into consideration the original iteration space bounds. In both cases, the
resulting systems of inequalities are eliminated using Fourier-Motzkin elimination but, as it
will be shown, the second application can be easily avoided. The complexity of our method
is equal to that of the methods proposed for code generation of linear loop transformations.
Compared to the method presented by Irigoin and Ancourt in [23], our method outperforms
in terms of efficiency. Experimental results show that the procedure of generating tiled
code is vastly accelerated, since the derived systems of inequalities, in our case, are smaller
and can be simultaneously eliminated. In addition, the generated code is much simpler,
containing less expressions and avoiding unnecessary calculations imposed by boundary
tiles.

The rest of the paper is organized as follows: Basic terminology used throughout the
paper and definitions from linear algebra are introduced in Section 2. We present tiling or
supernode transformation in Section 3. The problem of generating code for tiled iteration
spaces is defined in Section 4. Section 5 reviews previous work and proposes a new method
for the problem of tile origins enumerating. Section 6 reviews previous work and proposes
a new method for the problem of scanning the internal points of every tile. In Section 7 we
compare our method with the one presented in [23] and present some experimental results.
Finally, in Section 8 we summarize our results.

2. PRELIMINARIES

2.1 The Model of the Algorithms

In this paper we consider algorithms with perfectly nested FOR-loops that is, our algo-
rithms are of the form:

FOR �� � �� TO �� DO

FOR �� � �� TO �� DO

...

FOR �� � �� TO �� DO

Loop Body

ENDFOR

...

ENDFOR

ENDFOR

where: (1) � � ���	

	 ���, (2) �� and �� are rational-valued parameters and (3) �� and
�� (� �

�) are of the form: �� � �����������	

 	 ������	

 	 �������	

 	 �������
and �� � �����������	

 	 ������	

 	 �������	

 	 �������, where ��� and ��� are
affine functions. Therefore, we are not only dealing with rectangular iteration spaces,
but also with more general parameterized convex spaces, with the only assumption that
the iteration space is defined as the bisection of a finite number of semi-spaces of the �-
dimensional space ��. Each of these semi-spaces is corresponding to one of the bounds
�����	

 	 ����� or �����	

 	 ����� of the nested for-loops.

2.2 Notation

Throughout this paper the following notation is used: � is the set of naturals, � is
the set of integers, � is the set of rationals and � is the number of nested FOR-loops
of the algorithm. �� � �� is the set of indices, or the iteration space of an algorithm:
�� � �����	

	 ������ � � 	 ��
 ��
 ��	 �
 �
 ��. Each point in this �-dimensional
integer space is a distinct instantiation of the loop body. If � is a matrix we denote � �� the
matrix element in the �-th row and �-th column. We denote a vector as � or �� according
to the context. The -th element of the vector is denoted ��. In addition we define the
symbols �� and �� as follows: �� � �����	 �� and �� � ������	 ��.

2.3 Linear Algebra Concepts

We present some basic linear algebra concepts which are used in the following sections:

Definition 1: A square matrix � is unimodular, if it is integral and its determinant equals
to ��.

Unimodular transformations have a very useful property: their inverse transformation is
integral as well. On the other hand the inverse of a non-unimodular matrix is not integral,

which causes the transformed space to have “holes”. We call holes the integer points of the
transformed space that have no integer anti-image in the original space.

j’

i’

j’

i’i

j

0 1

hole
actual
point

2 1

T =2

i

j

1 1

0 1
T =1

Figure 1. Unimodular and Non-Unimodular Transformations

Definition 2: Let � be a � � integer matrix. We call the set ���� � ���� � �� 	 � �
��� the lattice that is generated by the columns of �.

Consequently, we can define the holes of a non-unimodular transformation as follows: if
� is a non-unimodular transformation, we call holes the points � � � �� such that ����� ��
��. On the contrary, we shall call actual points of a non-unimodular transformation �
the points � � � ��� � � ����� � ��. Figure 1 shows the results of a unimodular and a
non-unimodular transformation to the same index space. Holes are depicted by white dots
and actual points by black ones.

Theorem 1: If � is a � � integer matrix, and � is a � � unimodular matrix, then
��� � � �����.
Proof: Given in [1].

Definition 3: We say that a square, non-singular matrix � � � ���	

 	 ���� � �
��� is in

Column Hermite Normal Form (HNF) iff H is lower triangular (��� �� � implies � � �) and
for all � � �, �
 ��� � ��� (the diagonal is the greatest element in the row and all entries
are positive.)

Theorem 2: If � is a � � integer matrix of full row rank, then there exists a � �
unimodular matrix � such that �� � � ���� and �� is in Hermite Normal Form.
Proof: Given in [1].

Every integer matrix with full row rank has a unique Hermite Normal Form. By Theo-
rem 1 we conclude that ��� � � �� �� � which means that an integer matrix of full row rank
and its HNF produce the same lattice. This property will be proven to be very useful for
the code generation of tiled spaces.

2.4 Fourier-Motzkin Elimination Method

The Fourier-Motzkin elimination method can be used to test the consistency of a system
of linear inequalities ���
 ��, or to convert this system into a form in which the lower and
upper bounds of each element � � of the vector �� are expressed only in terms of the variables
��	

 	 ����. This fact is very important when using a nested loop in order to traverse an
iteration space �� defined by a system of inequalities. It is evident that the bounds of index
�� of the nested loop should be expressed in terms only of the � � outer indices. This
means that Fourier-Motzkin elimination can convert a system describing a general iteration
space into a form suitable for use in nested loops.

The method is based on the observation that a variable � � can be eliminated from such
a system by replacing each pair-wise combination of two inequalities which define a lower

and an upper bound on � � as follows:
�
 ����
����
 �

�
� ���
 ��� with �� � � and

�� � �. After this elimination, another system of inequalities is derived, without � �. This
resulting system has a large number of inequalities involving variable � �, but not all of them
are necessary for the precision of the corresponding bounds. The unnecessary inequalities
should be eliminated in order to simplify the resulting system. In order to specify the
redundant inequalities two methods are proposed: the “Ad-Hoc simplification method” and
the “Exact simplification method”. A full description of the Fourier-Motzkin elimination
method, the Ad-Hoc simplification and the Exact simplification method is presented in
[25].

If the initial system of inequalities consists of inequalities with � variables, then the

complexity of Fourier-Motzkin is � ��
�

��
�����

��
� � ���� �

���. Therefore, it depends doubly
exponentially on the number of variables involved.

3. TILING TRANSFORMATION

In a tiling transformation the index space � � is partitioned into identical �-dimensional
parallelepiped areas (tiles or supernodes) formed by � independent families of parallel
hyperplanes. Tiling transformation is uniquely defined by the �-dimensional square matrix
� . Each row vector of � is perpendicular to one family of hyperplanes forming the tiles.
Dually, tiling transformation can be defined by � linearly independent vectors, which are
the sides of the tiles. Similar to matrix � , matrix ! contains the side-vectors of a tile as
column vectors. It holds ! � ���. Formally, tiling transformation is defined as follows:

" 	 �� �� ���	 "��� �

�
����

� ��������

�

where ���� identifies the coordinates of the tile that iteration point ����	 ��	

 	 ��� is
mapped to and � � ������� gives the coordinates of � within that tile relative to the
tile origin. Thus the initial �-dimensional iteration space � � is transformed to a ��-
dimensional one, the space of tiles and the space of indices within tiles. Apparently, tiling
transformation is not a linear transformation. The following spaces are derived when tiling
transformation� is applied to an iteration space � �.

1. The Tile Iteration Space ������ � �� � ����
 ���� � ��, which contains all
points that belong to the tile starting at the axes origins.

2. The Tile Space �����	 �� � ��� ��� � ����	 � � ���, which contains the images
of all points � � �� according to tiling transformation.

3. The Tile Origin Space � ���� 	 ���� � �� � ���� � ����� 	 �� � ���, which
contains the origins of tiles in the original space.

According to the above it holds: � � �
�� �� and ��

�
�� � �. For simplicity reasons

we shall refer to ������ as ���, �����	 �� as �� and � ����	 ���� as � �. Note
that all points of �� that belong to the same tile are mapped to the same point of � � . This
means that a point �� in this �-dimensional integer space � � is a distinct tile with coordi-
nates ���� 	 �

�
� 	

 	 �

�
� �. Note also that � � is not necessarily a subset of � �, since there

may exist tile origins which do not belong to the original index space � �, but some itera-
tions within these tiles do belong to � �. The following example analyzes the properties of
each of the spaces defined above.

Example 1: Consider a tiling transformation defined by � �

�
�
�

� �
�

� �
�

�
�

�
or equivalently by

� �

�
� �
� �

�
applied to index space �� � �� � �� � �� � � �� � ��. Then, as shown in Fig-

ure 2, ��� contains points ���� ��� ��� ��� ��� ��� and �� is transformed by matrix � to Tile Space
�� � ����� ��� ���� ��� ���� ��� � � � � ������� ������� ������� �������. In the sequel, the Tile
Space �� is transformed by matrix � to �	� � ����� ��� ���� ��� ��� ��� � � � � �	� ��� �������

��� ��� �	�����. The points of �	� are shown in bold dots. �

2
Index Space Jn

Tile
origin

Tile Space JS

j

j S

j2
S

1

j1

TIS

0 2 4 6

2

4

-2

-2

0 2

2

-2

-2 4

Figure 2. �� , ��� and � � from Example 1

The iteration space �� of an algorithm, as defined in Section 2.2, can also be repre-
sented by a system of linear inequalities. An inequality of this system expresses a bound-
ary surface of our iteration space. Thus � � can be equivalently defined as: � � � �� �

���#�
 �$�. Matrix # and vector �$ can be easily derived from �� and �� in Sec-
tion 2.1. and vice versa. Similarly, points belonging to the same tile with tile origin

�� � � � satisfy the system of inequalities �
 ��� � ��� � �. In order to deal
with integer inequalities, we define � to be the minimum positive integer such as ��
is an integer matrix. Thus, we can rewrite the above system of inequalities as follows:

�
 ���� � ��� � � � �
 ���� � ���
 �� � �� We denote � �

�
��
���

�
and

�% �

�
�� � ����
��

�
. Equivalently the above system becomes: ��� � ���
 �%. Note that if

�� � �, ��� � ���
 �% is satisfied only by points in ���.

Example 2: Consider the following nested loop:

FOR �� � � TO �� DO

FOR �� � � TO �� DO

����� ��� � ���� � �� �� � �� � ���� � �� �� � ��

ENDFOR

ENDFOR

(0,0)

(1,0)

(2,0)

(3,0)

(4,0)

(5,0)

(-1,0)

(0,1)

(1,1)

(-1,1)

(2,1)

(3,1)

(4,1)

(5,1)

(2,-1)

(3,-1)

(4,-2)

(5,-1)

(6,-1)

(1,-1)(0,-1)

(-2,1)

(0,2)

(1,2)

(2,2)

(3,2)

(4,2)

j1

j2

(-1,2)

(-2,2)

(-2,3)

(-1,3)

(0,3)

(1,3)

(-3,3)

(-2,4) (2,3)

(-3,3)

(6,0)

(7,-1)

(4,-1)

(5,-2)

(6,-2)

(7,-2)

(5,2)

p1=(6,2)

p2=(4,8)

j1

j2

h1=(1/5,-1/10)

h2=(-1/20,3/20)

H =
1/5

-1/20

-1/10

3/20
P =

6

2

4

8

Figure 3. Tiling with matrices� and !

The index space �� is: �� � ����� ����� � �� � �
� � � �� � �
�. The set of inequalities

describing the index space �� is:

�
���

� �
� �
�� �
� ��

�
���
�

��
��

	
�

�
���

�

�

�
�

�
���. Let us consider, without

lack of generality, for tiling transformation matrix � �

�
�
�

� �
��

� �
��

�
��

�
. Consequently, we have

��� � � �

�
� �
� �

�
. The system of inequalities ������� �
� describing a tile is (since � � ��):

�
���

� ��
�� �
�� �
� ��

�
���
�

�� � ���
�� � ���

	
�

�
���

�

�

�
�

�
���. Figure 3 shows the form of a tile, the partition of the

index space �� into tiles and the coordinates of every tile according to the tiling transformation, or
equivalently the coordinates of every tile point in the Tile Space �� �

4. CODE GENERATION

Let us formally define the problem of generating tiled code that will traverse an iteration
space �� transformed by a tiling transformation� . Applying this transformation to � �, we
obtain the Tile Space �� , ��� and � �. In Section 3 it is shown that tiling transformation
is a �� �� ��� transformation, which means that a point � � � � is transformed into a
tuple of �-dimensional points (�		 �
), where �	 identifies the tile that the original point
belongs to (�	 � ��) and �
 the coordinates of the point relevant to the tile origin (�
 �
���). The tiled code reorders the execution of indices imposed by the original nested
loop, resulting in a rearranged, transformed order described by the following scheme: for
every tile in the Tile Space �� , traverse its internal points. According to the above, the
tiled code should consist of a ��-dimensional nested loop. The � outermost loops traverse
the Tile Space �� , using indices ��� 	 �

�
� 	

 	 �

�
� , and the � innermost loops traverse the

points within the tile defined by ��� 	 �
�
� 	

 	 �

�
� , using indices � ��	 �

�

�	

 	 �
�

�. We denote
��� , ��� the lower and upper bounds of index � �� respectively. Similarly, we denote � ��, ���
the lower and upper bounds of index � ��. In all cases, lower bounds �� are of the form:
�� � ��������	 ����	

� and upper bounds �� of the form: �� � ��������	 ����	

�,
where ���� , ���� are affine functions of the outermost indices. Code generation involves
the calculation of steps (loop strides) and exact lower and upper bounds for indices � �� and
��� . The problem of generating tiled code for an iteration space can be separated into two
subproblems: traversing the Tile Space � � and sweeping the internal points of every tile or,
in our context, finding lower and upper bounds for the � outermost indices � �� 	 �

�
� 	

 	 �

�
�

and finding lower and upper bounds for the � innermost indices � ��	 �
�

�	

 	 �
�

�.

5. TRAVERSING THE TILE SPACE

In this section we elaborate on the subproblem of traversing the Tile Space � � . We first
review previous work in the field and, in the sequel, we extend one of the approaches in
order to efficiently and correctly traverse the Tile Space.

5.1 Previous Work

The method presented by Ancourt and Irigoin in [23] traverses the Tile Space � � by
constructing a system of inequalities which consists of one system representing the orig-
inal index space and one system representing a tile. Recall from Section 3 that a point
� � �� that belongs to a tile with tile origin �� � � �, satisfies the set of inequali-
ties: ��� � ���
 �%. Let us denote ��� � �� the coordinates of �� in the Tile Space �� .
Clearly it holds �� � !��� . Consequently, the preceding system of inequalities becomes:

�
��� ��
�� ���

��
���
�

�

 �%. Recall also that a point � � �� satisfies the system of

inequalities #�
 �$. Combining these systems we obtain the final system of inequalities:

�
� � #

��� ��
�� ���

�
	� ���

�

�

�
�$
�%

�
(1)

Ancourt and Irigoin propose the application of Fourier-Motzkin elimination to the above
system in order to obtain proper formulas for the lower and upper bounds of the �-dimensi-
onal loop that will traverse the Tile Space. Although this method scans the tile origins
correctly, the elimination of the above system is impractical even for loops with small
nestings.

Ramanujam in [1] and [2] applied tiling transformation to the set of inequalities#�
 �$
representing the iteration space as follows: #�
 �$� #�����
 �$�

#!���

�$ (2)

Here, again, the application of Fourier-Motzkin elimination to the derived system of in-
equalities is proposed, in order to obtain closed form formulas for tile bounds � �� 	

 	 �

�
�

and ��� 	

 	 �
�
� .

This approach is more elegant since the system constructed has the same size as the one
that arises when any linear transformation is concerned. Unfortunately, it fails to enumerate
tile origins exactly. Problems arise because the method is applicable to integral matrices,
while � is not integral. Note that the system of inequalities in (2) is satisfied by points in
the Tile Space �� whose inverse belong to � �. However, as stated in Section 3 there exist
some points in � � that do not belong to � �. In Figure 3, tiles in the lower boundaries
such as (-3,3), (-2,1), (4,-2) and others are not scanned by this method because their origins
do not belong to the original index space � �. Nevertheless, these tiles also contain points
of the index space � � and should be traversed, although they do not satisfy the preceding
systems of inequalities.

5.2 Our Approach

We shall now extend the work presented in [1] and [2] in order to be also applicable
to the enumeration of tiles. We modify the system in (2) in order to include all tile ori-
gins. What is needed is a proper reduction of the lower bounds and/or a proper increase of
the upper bounds of our space. Lemma 1 determines how much we should expand space
bounds, in order to include all points of � �.

Lemma 1: If we apply tiling transformation ! to an index space � �, whose bounds are
expressed by the system of inequalities #�
 �$, then for all tile origins �� � � � it holds:

#��
 �$� (3)

where �$� is a �-dimensional vector formed by the vector �$ so that its �-th element is given
by the equation:

$�� � $�

� � �

�

�

���

�
�

���

&��'���
� (4)

where � is the minimum integer number by which the tiling matrix� should be multiplied
in order to become integral.
Proof: Suppose that the point � � �� belongs to the tile with origin ��. Then � can be expressed
as the sum of �� and a linear combination of the column-vectors of the tiling matrix � : � � �� �
�

��� �
�� . In addition, as aforementioned, the following equality holds:
� � ���� � ��� �

�� � ��. The �-th row of this inequality can be rewritten as follows:� �
���� � ��� �
���
�

, where

�� is the �-th row-vector of matrix � � ���. Therefore: � �
��

�

��� �
�� �
���
�

. As � � ���

it holds that
��
�� � � and
��
�� � � if � �� �. Consequently the last formula can be rewritten as
follows: � � � �

���
�

for all � � �� � � � � �.

For each � � ��, it holds �� �
�. The �-th row of this system can be written as follows:
�

��� ����� � �� We can rewrite the last inequality in terms of the corresponding tile origin as
follows:

�

��� ������� �

�

��� ����� � �� �

�

��� ������ � �� �

�

��� ���

�

��� ����

�

��
���

������ � �� �

��
���

�

��
���

������ (5)

In addition, as proved above, it holds � � � � ���
�

for all � � �� � � � � �. If multiplied by
�

��� ������ this inequality gives:

a) If

�

��� ������ � �: � � �

�

��� ������ �
���
�

�

��� ������

b) If

�

��� ������ � �: ���
�

�

��� ������ � �

�

��� ������ � �

Using the symbols �� and �� given in Section 2.2, the previous inequalities can be rewritten as
follows: � ���

�
�

�

��� �������
� � �

�

��� ������ �
���
�

�

�

��� �������
� � ��

�

��� ������

� ���
�

�

�

��� �������
�. If added for � � �� � � � � � this inequality gives: �

�

��� �

�

��� ������ �
���
�

�

����

�

��� �������
�.

Therefore, from the last formula and the inequality (5), we conclude that

�

��� ������ � �� �
���
�

�

����

�

��� �������
�. Thus, for each tile with origin �� which has at least one point in the

initial iteration space, it holds that ��� �
��, where the vector
�� is constructed so as its �th element
is given by the form: ��� � �� � ���

�

�

����

�

��� �������
�. �

If we consider Tile Space �� then, since �� � !��� , we equivalently get the system of
inequalities

#!���

�$� (6)

Thus we can adjust the system of inequalities in (2) making use of Lemma 1 and replacing
the vector �$ with �$�.

Geometrically the term added to each element of �$ expresses a parallel shift of the cor-
responding bound of the initial space. In Figure 4 we present an example of our method.
Each row �&� of the matrix # expresses a vector vertical to the corresponding bound of

Figure 4. Expanding bounds to include all tile origins

the iteration space and its direction is outwards. The equation of this boundary surface
is �&��� � $�. A parallel shift of this surface by a vector ��� is expressed by the equation
�&���� � ���� � $� � �&��� � $�
 �&� ���. As shown in Figure 4, we shift a boundary surface
by a tile edge-vector �'�, if this vector forms an angle greater than ��� with vector �&� (as the
angles between the vectors �&� and �'�, �&� and �'�, �&� and �'�, �&� and �'�, �&� and �'� in Fig-
ure 4), or equivalently if and only if �'� �&� � �. This fact can be expressed as follows: if the
dot product of one of the columns of the matrix ! , �' � and a row of #, �&� is negative, then
we should subtract this dot product from the constant $ �. In formula (4) we add the term
�
��

��� &��'���
� � ��&� �'��

� to the constant $� for all vectors �'�. The factor ��

by which
the shifting constant is multiplied, expresses the fact that a tile is a semiopen hyperparal-
lelepiped and thus we need not contain in the tile space the tiles which just touch the initial
iteration space. Note, however, that this expansion of bounds may include some redundant
tiles, whose origins belong to the extended space but their internal points remain outside
the original iteration space. These tiles will be accessed but their internal points will not be
swept, as it will be shown next, thus imposing little computation overhead in the execution
of the tiled code. Consequently, we succeeded to correctly access all tile origins with a
small system of inequalities that can be efficiently eliminated for practical problems.

(0,0)

(1,0)

(2,0)

(3,0)

(4,0)

(5,0)

(6,0)

(1,1)

(1,2)

(1,3)

(2,1)

(2,2)

(2,3)

(3,1)

(3,2)

(4,1)

(4,2)

(5,-1)

(5,1)

(5,2)

(6,-1) (7,-1)

(7,-2)

(0,1)

(0,2)

(0,3)

(-1,2)

(-1,3)

(-2,3)

(-2,4)

(1,-1)

(2,-1)
(3,-1)

(4,-1)

(4,-2)

(5,-2)

(6,-2)

(-3,3)

(-1,0)

(-2,2)

(-3,4)

(-1,1)

(-2,1)

(0,-1)
redundant
 tile

redundant
 tile

2j

j1

pk

pk

b

b

b

b1

2

1

2

Figure 5. Example 3: Expansion of bounds

Example 3: We shall enumerate the tiles of the algorithm shown in Example 2. We consider the
same tiling transformation. Following our approach, we construct the system of inequalities in (6)
making use of the expression in (4). Expression (4) in our case gives
�� �

�
�
 �

�	
�	

�
and thus the system in (6) becomes:

�
���

� �
� �
�� ��
�� ��

�
���
�

���
���

	
�

�
���

�

�

�	

�	

�
���. The expansion of

bounds for this example is shown in Figure 5. If we multiply row 1 by 2 and add it to row 4 we get
����� � ��	 � ��� � �. Similarly we get ��� 	 �� (this corresponds to a rough application of
FM). Consequently a loop that enumerates the origins of tiles in our case has the form:

FOR ��� � �	 TO
 DO

FOR ��� ������
���������

	
�� �

���������

�� TO ��	��
�������

	
�� �

�������

�� DO

ENDFOR

ENDFOR

Note that tiles ������ and ���� �� are redundant. �

6. SCANNING THE INTERIOR OF A TILE

6.1 Previous Work

Traversing the internal points of a tile is also discussed by Ancourt and Irigoin in [23].
Similarly to the approach used there to enumerate tile origins, Ancourt and Irigoin construct
a proper system of inequalities, which they eliminate using Fourier-Motzkin elimination.

The inequalities describing the original index space and the tile can be equivalently rewrit-
ten as: �

� #
��
���

�
	 �

�
� �$

�� � ����
 ����
��� ����

�
	 (7)

where vector ��� gives the coordinates of the tile to be traversed. Again here, the size of the
system is too big, making Fourier-Motzkin elimination inefficient for practical problems.

6.2 Our Approach

In the following, we present a new method to sweep the internal points of a tile. Our
goal is to construct a smaller system of inequalities that can be efficiently eliminated. Our
approach is based on the use of a non-unimodular transformation. We shall traverse the
��� and then slide the points of ��� properly, so as to scan all points of � �. In order
to achieve this, we transform the ��� to a rectangular space, called the Transformed Tile
Iteration Space (����). We traverse the ���� with an �-dimensional nested loop and
then transform the indices of the loop, so as to return to the proper points of the ���. In

other words, we are searching for a transformation pair (! �, � �): ����
� �

�� ��� and

���
��

�� ���� (Fig. 6). Intuitively, we demand ! � to be parallel to the tile sides, that is
the column vectors of ! � should be parallel to the column vectors of ! . This is equivalent
to the row vectors of � � being parallel to the row vectors of � . In addition, we demand
the lattice of � � to be an integer space in order for loop indices to be able to traverse it.
Formally, we are searching for an �-dimensional transformation� � 	 � � � (� , where (
is a �� diagonal matrix and ��� �� � ��. The following Lemma proves that the second
requirement is satisfied if and only if� � is integral.

Lemma 2: If � � � ��	 � � �� then � � � �� iff A is integral.
Proof: If A is integral it is clear that � � � ��
� � ��. Suppose that �� � ��
� � ��. We
shall prove that � is integral. Without lack of generality we select � � ���, where ��� is the �-th
unitary vector, ��� � ����� � � � � ����, ��� � �� ��� � �� � �� �. Then according to the above
���� � �

�

��� ������ �

�

��� ������ � � � � �

�

��� ������ �
� � ����� ���� � � � � ����

� � ��. This
holds for all ���� � � � � � � �, thus � is integral. �

Let us construct (in the following way: every diagonal element) �� is the smallest
integer such that)���� is integral, where �� is the -th row of matrix � . Thus both
requirements for� � are satisfied. It is obvious that� � is a non-unimodular transformation.
This means that the Transformed Tile Iteration Space contains holes. In Figure 6, the holes
in the ���� are depicted by white dots, while the actual points are depicted by black dots.
So, in order to traverse the ���, we have to scan all actual points of the ���� and then
transform them back using matrix ! �. For the code generation we shall use the same notion
as in [1], [3], [5] and [4]. However, we shall avoid the application of the Fourier-Motzkin
elimination method to calculate the bounds of the ���� by taking advantage of the tile
shape regularity.

P’

H’

1

2

Transformed Tile Iteration Space (TTIS) Tile Iteration Space (TIS)

2

1

j

j

j’

j’0 5 10

5

10

15

20

0 5 10

5

10

Figure 6. Traverse the ��� with a non-unimodular transformation

We use a �-dimensional nested loop with iterations indexed by � �����	 �
�

�	

 	 �
�

�� in or-
der to traverse the actual points of the ����. The upper bounds of the indices � �� are easily
determined: it holds � ��
)����. However, the increment step �� of an index � �� is not nec-
essarily 1. In addition to this, if index � �� is incremented by ��, then all indices � ����	

 	 �

�

�

should be initialized at certain offset values ������� 	

 	 ���. Suppose that for a certain
index vector � �, it holds ! ��� � ��. The first question is how much to increment the
innermost index � �� so that the next swept point is also integral. Formally, we search the

minimum �� � � such that ! �
�
��� ���

 ���
 ��

�
� ��. After determining

��, the next step is to calculate the increment step of index � ���� so that the next swept
point is also integral. In this case, it is possible that index � �� should also be augmented by
an offset ������� 	 �
 ������� � ��. In the general case of index � �� we need to determine

��	 ������� 	

 	 ��� so that: ! �
�
���

 ���
 �� �����
 �������

 ���
 ���

�
� ��. Every index � �� has � � different offsets ���, depending on each of the increment
steps �� of the � � outer indices � ��	 � � �

 � �. These offsets are ���	

 	 �������.
The following Lemma 3 proves that increment steps �� and offsets ���, (� �

 � and
� � �

 ��), are directly obtained from the Hermite Normal Form of matrix� �, denoted�� �.

Lemma 3: If �� � is the column HNF of � � and � �����	 �
�

�	

 	 �
�

�� is the index vector used
to traverse the actual points of ��� ��, then the increment step (stride) for index � �� is
�� � ����� and the offsets are ��� � �����, (� �

 � and � � �

 � �).
Proof: It holds ��� �� � ���� �� and
� � ��� ��. In addition to this, the columns of �� � belong to
��� ��. Suppose
� � ���
� with the following properties: �� � � for � � � and � � �� � �����
for � � � � �. It suffices to prove that
� �� �����. Suppose that
� � ����� which means that
�� � �� � �� �� �
�. �� � is a lower triangular non-negative matrix and thus it holds: �� � ������� �

� � �� � �. Similarly �� � � for � � �. In addition it holds: �� � �������. According to
the above it should hold � � �� � ������� � ����� � � � �� � �. In addition � � ���� ������������ � ����������������� � ���������. Since ������������� 	 ��������� � ���� � �. Simi-
larly �� � � for � � � � �. Consequently either
� �
� which is a contradiction, or
� is the � � ��

column of �� �. �

According to the above analysis, the point that will be traversed using the next instantia-
tion of indices is calculated from the current instantiation, since steps and offsets are added
to the current indices. There are two remarks that have to be made on that: First, the indices
of the loop must be initialized to the values: � �� � ����	

 	 �

�

� � ����. Second, the loop
must choose the appropriate offset for index � �� among ���	

 	 �������. Recall that ���
expresses the offset of index � �� when index � �� (� �) is incremented by its step ��. The
following form of loops suggests a solution to this problem using an extra variable PHASE
showing the index that has just been incremented. The �*+ expression is used to traverse
the minimum point in the particular dimension.

~
2 22

21 21

2

1 11
~

a = h’ = 2
~

c =h’ =5

c =h’ =1

j

j1

Figure 7. Steps and offsets in ���� derived from matrix �� �

Theorem 3: The following �-dimensional nested loop traverses all points � � � ����

��� � ��� �������� � � � ��� �������� ����� � ��

FOR ��� � � TO �� � � ���� � !� ����� � � DO

FOR ��� � ���� � �� �������������!� TO �� � � ���� � !� ����� � � DO

� � �

FOR ��� � ���� � �� �������������!� TO �� � � ���� � !� DO

� � �

ENDFOR

� � �

ENDFOR

ENDFOR

Proof: It can be easily derived from Lemmas 2 and 3.

We now need to adjust the above loop, which sweeps all points in ����, in order to
traverse the internal points of any tile in � � . If � � � ���� is the point derived from the
indices of the former loop and �� � �� is the tile whose internal points � � �� we want
to traverse, it will hold: � � !��
 ! ��� � ��
 ! ���, �� � � �, where �� � !�� is

the tile origin, and ! ��� � ��� the corresponding to � � point in ���. Special attention
needs to be given so that the points traversed do not outreach the original space boundaries.
As we have mentioned, a point � � � � satisfies the following set of inequalities: #�
 �$.
Replacing � by the above equation we have: #���
 !

����
 �$�

#! ���
 �$�#�� (8)

Applying Fourier-Motzkin elimination to the preceding set of inequalities, we obtain proper
expressions for � �, so as to not cross the original space boundaries. In this way, the problem
of redundant tiles that arose in the previous section is also faced, since no computation is
performed in these tiles.

Example 4: Continuing the previous examples, we shall now sweep the internal points of a tile.

If we follow our method we have the following: �� �

�
� ��

�� �

�
and " �

�
�� �
� ��

�
.

Accordingly � � �

�
�
�

�
�

�
�

�
�

�
. The Hermite Normal Form of matrix � � is �� � �

�
� �
� 	

�
��

� ��
�� �

� �
� �
� �

�
and thus, as shown in Figure 7, !� � �, !� � 	 ��� � �. We con-

struct matrix ��� ��
���� �

�
���

�
�

�
�

�
 � �
�
�

�
�

�
 � �
� �

�
� �

�
� �� �

� �
�

� �
�

� � ��

�
���. FM elimination on this matrix gives:

�
�������

� � � � ��
�
�

�
�

�
 � �
�
�

�
�

�
 � �
�� � �
 �� �
� �

�
� �

�
� �� �

� �
�

� �
�

� � ��

�
�������

. Consequently, the loop that traverses the indices inside every

tile, in our case is:
�

���
���

�
�

�
 	
�

��
���
���

�

��� � ��

FOR ��� ����������� ���� � ���� TO ��	��� �
� ���� � ��� � ��� � � DO

FOR ��� � �������� � ���������� � ���� � �
���������

�
��

TO ��	��������� � ���� � ���� �
�����������	�

�
�� ��� � � DO

�
��
��

�
�

�
���
���

�
�

� �
�

�
�

�
�

�
�

��
���
���

�

����� ��� � ���� � �� �� � �� ����� � �� �� � ��

ENDFOR

ENDFOR

�

7. COMPARISON

We shall now compare our method for generating tiled code with the one presented
by Ancourt and Irigoinin [23]. Let us primarily consider the problem of enumerating the
Tile Space. The system in (1) contains �� inequalities with �� variables, while the one in
(6) contains �� inequalities with � variables. This means that in our case, the extremely
complex Fourier-Motzkin elimination algorithm is supplied with a much smaller input. In
order to sweep the internal points of every tile, Ancourt and Irigoin propose the application
of Fourier-Motzkin elimination to the system derived from expression (7). In our case, we
can avoid any further application of FM elimination by making the following observation:
the first part of the systems of inequalities in (6) and (8) are expressed by matrices #!
and #! � respectively. The second one can be derived from the first one by dividing each
column by the constant)�� . Since all steps of FM elimination depend only on the form
of these matrices, we can apply it to both systems (6) and (8) by executing the method only
once. That is, if we apply FM elimination to the matrix �#! ��$��#! ���$�#�, taking care to
adapt the matrix #! to the desired form, the matrix #! � can be simultaneously adapted.
Consequently, the procedure of generating tiled code becomes much more efficient, as in
the case of linear loop transformations.

Moreover, our method results in fewer inequalities for the bounds of the Tile Space and
thus needs fewer bound calculations during run time. As a drawback, it may enumerate
some redundant tiles as well. However, these are restricted only at the edges of the Tile
Space. If the Tile Space is large enough, then we can safely assert that their number is
negligible in respect to the total number of tiles that actually have to be traversed. In any
case, the method that sweeps iterations within tiles, finds no iterations to be executed within
these tiles.

Table 1: Example Iteration Spaces

�� �� �� �	
lower upper lower upper lower upper lower upper
bound bound bound bound bound bound bound bound

Space� � ���� � ���� - - - -
Space� � ���� � ���� - - - -
Space� � ��� � ��

�
�������

�
- - - -

Space	 � ���� � ��		 � �� - - - -
Space� � 	��� � ���� � ���� - -
Space� � ���� � �			 � �� ��� �			 � �� - -
Space � ���� ��� �			 � �� ��� �			 � �� - -
Space
 � 	� ��� ��� ��� ���� �	 � ��� � ��� - -
Space� � �� � �� � �� � ��

Space�� � �� � �	 � �� ��� �	 � �� ��� �	� ��

Space�� � �� � �	� ��� ���� �	� ��� � �	� ��

Space�� � �� ���� �	� ��� ���� �	� ��� ���� �	 � ���

In order to evaluate the proposed method, we ran a number of examples with dif-
ferent matrices ! , #, $ and counted the number of row-operations needed by Fourier-
Motzkin for the calculation of the bounds in the Tile Space. The implementation of

the Fourier-Motkzin algorithm was based on the techniques presented in [24]. Table 1
shows the iteration spaces used. Note that the first four spaces are �-dimensional, the
second ones are -dimensional and the last ones are �-dimensional. The shapes in all
cases vary from rectangular to more complex ones. Each iteration space was tiled using
four tiling transformations. More specifically, the �-dimensional algorithms were tiled

using �� �

�
	 �
� �

�
, �� �

�
� �
� �

�
, �� �

�
�� �	
�� ��

�
and �	 �

�
� �
�

�
, the

-dimensional using �� �

�
� �� � �

� �	 �
� � 	

�
�, �� �

�
� 	 � �

� � �
� � �

�
�, � �

�
� 	 � �

� � �
� �� �

�
�

and �
 �

�
� �	 � ��

� � �
� � �

�
� and the �-dimensional using �� �

�
���

�� � � �
� �	 � �
� � 	 �
� � � �

�
���, ��� �

�
���

� � � �
� 	 � �
� � 	 �
� � � �

�
���, ��� �

�
���

� � � �
� 	 �	 �

�� � 	 �
� � � �

�
��� and ��� �

�
���

� � � �
�	 	 � �
� � 	 �
� � � �

�
���. The row

operations required in each case are shown in Tables 2–4. We denote the method presented
by Ancourt and Irigoin in [23] as AI and our method as RI (Reduced Inequalities). It is
clear that, as expected, in all cases RI method greatly outperforms AI method.

Table 2: Number of Row Operations for
�-dimensional Algorithms

AI method RI method

Space�/�� �	 	
Space�/�� 	� ��
Space�/�� � ��
Space�/�	 � ��
Space�/�� �	 	
Space�/�� ��� ��
Space�/�� �
 ��
Space�/�	 �� ��
Space�/��
	 	
Space�/�� 	�� ��
Space�/�� �
� �	
Space�/�	 ��� ��
Space	/�� ��� 	
Space	/�� �	
 ��
Space	/�� ��� ��
Space	/�	 ��� ��

Table 3: Number of Row Operations for
�-dimensional Algorithms

AI method RI method

Space�/�� 	
 ��
Space�/�� ��� ���
Space�/�

�� ���
Space�/�
 ����� �	
Space�/�� 	 ��
Space�/�� ���
� ��
Space�/� ��	� ���
Space�/�
 ��	�� �	

Space/�� ��	 ��
Space/�� ��
� ���
Space/� ����� ���
Space/�

���� �	
Space
/�� ���� ��
Space
/�� ������ ��
Space
/� ���	 ��
Space
/�
 ����� ��

We ran the above experiments on a Sun HPC450 with 4 UltraSparcII 400MHz CPUs
and 1GB RAM, using Solaris 8. Some indicative execution times are, for example: Us-
ing �,-"�,�*� %'��-
 with tiling matrix !�, AI method completed in �
����, while RI
method completed in �
��%-�. Using �,-"�,�*� %'��-
 with tiling matrix !
, AI method
completed in �����, while RI method completed in �
��%-�. This illustrates the improve-

Table 4: Number of Row Operations for �-dimensional Algorithms

AI method RI method

Space�/�� ��� ��
Space�/��� ���� ��	
Space�/��� ���� �
�
Space�/��� ����
 ���
Space��/�� 	��	 ��
Space��/��� ���
� ���
Space��/��� �	���� ��
Space��/��� �
���� ���
Space��/�� �� ��
Space��/��� ���	 ���
Space��/��� �	��� ���
Space��/��� ���
	 ��

Space��/�� ���� ��
Space��/��� ����	 �
�
Space��/��� ���� ���
Space��/��� ��
��
�� �	

ment achieved when applying our method for the reduction of the compilation time using
tiling transformations.

8. CONCLUSIONS

In this paper, we surveyed all previous work concerning code generation for linear loop
transformations and tiling transformations and proposed a novel approach for the problem
of generating code for tiled nested loops. Our method is applied to general parallelepiped
tiles and non-rectangular space boundaries as well. In order to generate code efficiently, we
divided the problem in the subproblems of enumerating the tiles and sweeping the points
inside each tile. In the first case, we extended previous work on non-unimodular transfor-
mations in order to precisely traverse all tile origins. In the second case, we proposed the
use of a non-unimodular transformation in order to transform the tile iteration space into
a hyper-rectangle. We traversed that rectangular space and adjusted the results in order to
access the internal points of any single tile in the tile space. Fourier-Motzkin elimination is
applied only once to a system of inequalities as large as the systems that arise from any lin-
ear transformation. Experimental results show that our method outperforms previous work
since it constructs smaller systems of inequalities that can be simultaneously eliminated.

References

[1] J. Ramanujam, “Non-Unimodular Transformations of Nested Loops,” in Proceedings
of Supercomputing 92, pp. 214–223, Nov. 1992.

[2] J. Ramanujam, “Beyond Unimodular Transformations,” Journal of Supercomputing,
9(4), pp. 365–389, Oct. 1995.

[3] J. Xue, “Automatic Non-Unimodular Loop Transformations for Massive Parallelism,”
Parallel Computing, 20(5) pp. 711-728, 1994.

[4] A. Fernandez, J. Llaberia and M. Valero, “Loop Transformation Using Nonunimod-
ular Matrices,” IEEE Trans. on Parallel and Distributed Systems, vol.6, no.8, pp.
832–840, Aug. 1995.

[5] W. Li and K. Pingali, “A Singular Loop Transformation Framework based on Non-
singular Matrices,” in Proceedings of the Fifth Workshop on Languages and Compil-
ers for Parallel Computing, Aug. 1992.

[6] F. Irigoin and R. Triolet, “Supernode Partitioning,” in Proceedings of the 15th Ann.
ACM SIGACT-SIGPLAN Symp. Principles of Programming Languages, pp. 319–329,
San Diego, California, Jan. 1988.

[7] J. Ramanujam and P. Sadayappan, “Tiling Multidimensional Iteration Spaces for Mul-
ticomputers,” Journal of Parallel and Distributed Computing, vol. 16, pp.108–120,
1992.

[8] P. Boulet, A. Darte, T. Risset and Y. Robert, “(Pen)-ultimate tiling?,” INTEGRATION,
The VLSI Jounal, volume 17, pp. 33–51, 1994.

[9] J. Xue, “Communication-Minimal Tiling of Uniform Dependence Loops,” Journal of
Parallel and Distributed Computing, vol. 42, no.1, pp. 42–59, 1997.

[10] J. Xue, “On Tiling as a Loop Transformation,” Parallel Processing Letters, vol.7,
no.4, pp. 409–424, 1997.

[11] W. Shang and J.A.B. Fortes, “Independent Partitioning of Algorithms with Uniform
Dependencies,” IEEE Trans. Comput., vol. 41, no. 2, pp. 190–206, Feb. 1992.

[12] E. H. Hollander, “Partitioning and Labeling Loops by Unimodular Transformations,”
IEEE Trans. on Parallel and Distributed Systems, vol. 3, no. 4, pp. 465–476, Jul.
1992.

[13] M. Wolf and M. Lam, “A Loop Transformation Theory and an Algorithm to Maximize
Parallelism,” IEEE Trans. on Parallel and Distributed Systems, vol.2 no.4, pp. 452–
471, Oct. 1991.

[14] J.-P. Sheu and T.-S. Chen, “Partitioning and Mapping Nested Loops for Linear Array
Multicomputers,” Journal of Supercomputing, vol. 9, pp. 183–202, 1995.

[15] Chung-Ta King, W-H Chou and L. Ni, “Pipelined Data-Parallel Algorithms: Part II
Design,” IEEE Trans. on Par. and Dist. Systems, vol. 2, no. 4, pp. 430–439, Oct. 1991.

[16] P. Tsanakas, N. Koziris and G. Papakonstantinou, “Chain Grouping: A Method for
Partitioning Loops onto Mesh-Connected Processor Arrays,” IEEE Trans. on Parallel
and Distributed Systems, vol. 57, no. 2, pp.941–955, Sep. 2000.

[17] J.-P. Sheu and T.-H. Tai, “Partitioning and Mapping Nested Loops on Multiprocessor
Systems,” IEEE Trans. on Parallel and Distributed Systems, vol. 2, no. 4, pp. 430–
439, Oct. 1991.

[18] I. Drossitis, G. Goumas and N. Koziris, G. Papakonstantinou, P. Tsanakas, “Evalua-
tion of Loop Grouping Methods based on Orthogonal Projection Spaces,” in Proceed-
ings of the 2000 Int’l Conference on Parallel Processing (ICPP-2000), pp. 469–476,
Toronto, Canada, Aug. 2000.

[19] E. Hodzic and W. Shang, “On Supernode Transformation with Minimized Total Run-
ning Time,” IEEE Trans. on Parallel and Distributed Systems, vol. 9, no. 5, pp. 417–
428, May 1998.

[20] G. Goumas, A. Sotiropoulos and N. Koziris, “Minimizing Completion Time for Loop
Tiling with Computation and Communication Overlapping,” Int’l Parallel and Dis-
tributed Processing Symposium 2001 (IPDPS-2001), San Francisco, California, Apr.
2001.

[21] E. Hodzic and W. Shang, “On Time Optimal Supernode Shape,” in Proceedings of
the International Conference on Parallel and Distributed Processing Techniques and
Applications (PDPTA), Las Vegas, CA, Jun. 1999.

[22] P. Tang and J. Xue, “Generating efficient tiled code for distributed memory machines,”
Parallel Computing, 26(11) pp. 1369–1410, 2000.

[23] C. Ancourt and F. Irigoin, “Scanning Polyhedra with DO Loops,” in Proceedings of
the Third ACM SIGPLAN Symposium on Principles & Practice of Parallel Program-
ming (PPoPP), pp. 39–50, Apr. 1991.

[24] W. Pugh, “The Omega Test: a fast and practical integer programming algorithm for
dependence analysis,” Comuunications of the ACM, 35(8): pp. 102–114, Aug. 1992.

[25] A.J.C. Bik and H.A.G. Wijshoff, “Implementation of Fourier-Motzkin Elimination,”
in Proceedings of the first annual Conference of the ASCI, Heijen, The Netherlands,
pp 377–386, May 1995.

Georgios Goumas, received his Diploma in Electrical and Computer En-
gineering from the National Technical University of Athens in 1999.
He is currently a PhD candidate at the Department of Electrical and
Computer Engineering, National Technical University of Athens. His
research interests include Parallel Processing (Parallelizing Compilers,
Automatic Loop Partitioning), Parallel Architectures, High Speed Net-
working and Operating Systems.

Maria Athanasaki, received her Diploma in Electrical and Computer En-
gineering from the National Technical University of Athens in 2001.
She is currently a PhD candidate at the Department of Electrical and
Computer Engineering, National Technical University of Athens. Her
research interests include Parallel and Distributed Systems, Paralleliz-
ing Compilers, Dependence Analysis and High Performance Numerical
Applications.

Nectarios Koziris, received his Diploma in Electrical Engineering from
the National Technical University of Athens and his Ph.D. in Computer
Engineering from NTUA (1997). He is currently a faculty member at the
Department of Electrical and Computer Engineering, National Technical
University of Athens. His research interests include Computer Archi-
tecture, Parallel Processing, Parallel Architectures (Loop Compilation
Techniques, Automatic Algorithm Mapping and Partitioning) and Com-
munication Architectures for Clusters. He has published more than 40
research papers in international refereed journals, and in the proceedings
of international conferences and workshops. He has also published two
Greek textbooks “Mapping Algorithms into Parallel Processing Archi-
tectures”, and “Computer Architecture and Operating Systems”. Nec-
tarios Koziris is a recipient of the IEEE-IPDPS01 best paper award for
the paper “Minimising Completion Time for Loop Tiling with Computa-
tion and Communication Overlapping”. He is reviewer in International
Journals and Conferences. He served as PC member for HiPC 2002 and
Program Chair for the SAC03 ACM Symposium on Applied Computing-
Special Track on Parallel, Distributed Systems and Networking. He con-
ducted research in several EU and national Research Programmes. He
is a member of IEEE Computer Society, member of IEEE-CS TCPP and
TCCA (Technical Committees on Parallel Processing and Computer Ar-
chitecture), ACM and organized the Greek IEEE Chapter Computer So-
ciety.

