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This paper proposes a new method for the problem of minimizing the execution time
of nested for-loops using a tiling transformation. In our approach, we are interested not
only in tile size and shape according to the required communication to computation ratio,
but also in overall completion time. We select a time hyperplane to execute different tiles
much more efficiently by exploiting the inherent overlapping between communication and
computation phases among successive, atomic tile executions. We assign tiles to processors
according to the tile space boundaries, thus considering the iteration space bounds. Our
schedule considerably reduces overall completion time under the assumption that some
part from every communication phase can be efficiently overlapped with atomic, pure tile
computations. The overall schedule resembles a pipelined datapath where computations
are not anymore interleaved with sends and receives to non-local processors. We survey
the application of our schedule to modern communication architectures. We performed
two sets of experimental results, one using MPI primitives over FastEthernet and one
using the SISCI API over an SCI network. In both cases, the total completion time is
significantly reduced.

1. Introduction

One of the most difficult areas in the field of parallel computing is the automatic loop
parallelization and efficient mapping onto different parallel architectures. The key issue
in loop mapping is to mitigate communication overhead by efficiently controlling the
computation to communication grain. In distributed memory machines, explicit message
passing incurs extra time overhead due to message startup latencies and data transfer
delays.

In order to eliminate the communication overhead, Shang [1], Hollander [2] and others,
have presented methods for dividing the index space into independent sets of iterations,
which are assigned to different processors. However, in many cases, independent parti-
tioning of the index space is not feasible, thus data exchanges between processors impose
additional communication delays. When fine grain parallelism is concerned, several meth-
ods were proposed to group together neighboring chains of iterations, while preserving
the optimal hyperplane schedule [3,4].
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As far as coarse grain parallelism is concerned, researchers are dealing with the problem
of alleviating the communication overhead by applying the supernode or tiling transfor-
mation. Under this scheme, neighboring iteration points are grouped together to built a
larger computation node that can be atomically executed without any intervention. Data
exchanges are also grouped and performed with a single message for each neighboring
processor, at the end of each atomic supernode execution. Supernode partitioning of the
iteration space was proposed by Irigoin and Triolet in [5]. In their paper Ramanujam and
Sadayappan [6] showed the equivalence between the problem of finding a set of extreme
vectors for a given set of dependence vectors and the problem of finding a tiling transfor-
mation H that produce valid, deadlock-free tiles. The use of a communication function
that has to be minimized by linear programming approaches was used by Boulet et al.
in [7]. They calculated the total communication produced by a tile as a function of its
sides and shape and proved that the minimization can be done independently of the tile
volume.

Nevertheless, all above approaches ignore the actual iteration space boundaries. Al-
though tile shape is of great importance to communication reduction, the objective should
be the overall tiled space completion time. Hodzic and Shang [8] proposed a method to
correlate optimal tile size and shape, based on overall completion time reduction. They
consider supernode transformations where data exchanges are between neighboring suc-
cessive tiles. In this context, the tiled space is considered as a new iteration space with
unitary dependencies. They applied the hyperplane transformation to these loop tiles
and generated a schedule where the objective is to reduce the overall time by adjusting
the tile size and shape appropriately. Each processor executes all tiles along a specific
dimension, by interleaving computation and communication phases. All processors first
receive data, then compute and finally send result data to neighbors in explicitly distinct
phases, according to the hyperplane scheduling vector.

In this paper we propose an alternative method for the problem of scheduling the tiles
to processors. Each atomic tile execution involves a communication and a computation
phase and this is repeatedly done for all time planes. We are compacting this sequence of
communication and computation phases, by overlapping them for the different processors.
The proposed method acts like enhancing the performance of a processor’s datapath with
pipelining, because a processor computes its tile at k time step and concurrently receives
data from all neighbors to use them at k + 1 time step and sends data produced at k − 1
time step. Since data communications involve some startup latencies, we adjust the com-
putation grain to make room for this overhead and try to overlap with all communication,
which can be done in parallel. The time hyperplane that allows for such overlapping is
determined by the bounds of the tiled space. Specifically, the dimension with the larger
boundary defines the processor mapping, thus all tiles along this dimension are mapped
to the same processor. Previous work in the field of UET-UCT scheduling of grid graphs
in [9], has shown that this schedule is optimal when the computation to communication
ratio is one.

We investigate the application of our scheduling method to modern communication
architectures. At first, a general message passing environment over a packet based com-
munication layer (e.g. MPI over Ethernet) is considered. In this environment the overlap-
ping schedule is achieved by appropriately using nonblocking communication primitives
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and DMA. Second, we consider a more advanced communcation technology like SCI. SCI
NICs support shared memory programming either through PIO (Programmed-IO) mes-
saging or through DMA. We are using their kernel-level DMA support for messaging.
Invoking kernel system calls, causes extra CPU cycles overhead. However, we can avoid
extra copying from user space to kernel space (physical memory) when using DMA. We
allocate user level pages which correspond to physical pre-reserved memory regions, for
DMA communications. If user level (virtual) memory, reserved for data communication
between neighboring tiles, is directly mapped to hardware (physical), we have no extra
copying [10]. The zero copy transfer mechanism requires that both sender and receiver
memory areas must be pinned down to physical memory during transfer, since NICs and
most DMA engines access only physical memory addresses. Zero-copy is considerably re-
ducing the initial latency for data transfers (for the effects of a zero-copy implementation
of a common communication layer see [11]). In addition to this, SCI shared memory com-
munication mode (either PIO or DMA based) is dramatically reducing communication
time, compared to other software packet-based communication layers (i.e. Ethernet ones
like MPI). In fact, when using SCI as communication medium, processes only declare
their communication end-points (reserve memory areas through kernel syscalls) and then
all data exchanges can be just implemented as very fast remote writes (“send”) and local
reads (“receive”). No other software protocol layering is needed (packetization etc.) which
increases initial latencies. SCI packetization and flow control is completely in hardware.

We propose the use of DMA to remote write (send) data to neighboring nodes, while
the CPU is computing each tile. Every node reserves special (pinned down) regions of
memory as message buffers, exported to the SCI global address space. These memory
areas are used to store data needed to be sent to neighbors. All nodes that have to
“send” data, import these regions and perform SCI remote writes, where data are being
written (transferred) with the aid of DMA. We use the SISCI API [12–14] for all system
calls related to SCI. The CPU is doing all computations, calculating all results per tile. It
stores the results directly into reserved physical memory areas where the DMA can directly
read them. DMA reads the results (locally) and sends them to the neighboring nodes
by performing remote writes to the respective exported-areas. Each node is importing
the exported segments so that it can perform remote writes to them. The CPU of the
neighboring node reads from its local (exported) segment the results that the DMA post
call of the previous node has written to. Each node performs a enqueue-post DMA
sequence to prepare the DMA remote writing, then concurrently issues the compute()

call and finally, waits for DMA to finish the transfer. Synchronization between neighboring
nodes is done through SCI interrupts. Under the above implemented scheme, we avoid
most of communication overhead and allow for actual computation to communication
overlapping. All experimental results show that when the overlapping schedule is applied,
the overall completion time is considerably reduced, under the term of controlling the
computation to communication grain.

The rest of the paper is organized as follows: Basic terminology used throughout the
paper and definitions of loop tiling are introduced in Section 2. In Section 3 we analyze
the properties of the non-overlapping optimal time schedule of tiles, whereas in Section
4 we introduce the pipelined approach of an overlapping time schedule.In Section 5 we
discuss the application of our scheduling method to specific communication architectures.
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In section 6 we present experimental results by simulating both scheduling approaches to
various problems using MPI primitives and by implementing them on SCI. Finally, we
summarize our results and propose future work.

2. Models – Loop Tiling

2.1. The Model of the Algorithms
In this paper we consider algorithms with perfectly nested FOR-loops and constant

loop carried data dependencies. That is, our algorithms are of the form:

FOR i1=l1 TO u1 DO

...

FOR in=ln TO un DO

AS1(i)
...

ASk(i)
ENDFOR

...

ENDFOR

where: (1) li and ui are integer-valued constants, meaning that the iteration set is a
parallelepiped/multidimensional rectangle, (2) i = (i1, ..., in) and (3) AS1, ..., ASk are as-
signment statements of the form V0 = E(V1, ..., Vl), where V0 is an output variable indexed
by i and produced by expression E operating on input variables V1, ..., Vl, also indexed by i.

2.2. Notation
Throughout this paper the following notation is used: N is the set of naturals, Z

is the set of integers, n is the number of nested FOR-loops of the algorithm and m
is the number of dependence vectors of the algorithm. Jn ⊂ Zn is the set of indices:
Jn = {j(j1, ..., jn)|ji ∈ Z ∧ li ≤ ji ≤ ui, 1 ≤ i ≤ n}. Each point in this n-dimensional
integer space is a distinct instantiation of the loop body. If A is a κ×λ matrix, we denote
aij the matrix element in the i-th row and j-th column, thus A = {aij}, where 1 ≤ i ≤ κ
and 1 ≤ j ≤ λ. A dependence vector is denoted dj = (d1j, . . . , dnj), 1 ≤ j ≤ m. The
dependence set DS of an algorithm A is the set of all dependence vectors of this algorithm:
DS = {d1, d2, ..., dm}. Similarly, the dependence matrix D is defined as D = {dij}, 1 ≤
i ≤ n, 1 ≤ j ≤ m, where dij denotes the i-th coordinate of the j-th dependence vector.
Notice that all dependence vectors are considered uniform and constant, i.e. independent
of the indices of computations.

2.3. Supernode Transformation
In a supernode transformation the index space Jn is partitioned into identical n-

dimensional parallelepiped areas (tiles or supernodes) formed by n independent families
of parallel hyperplanes. Supernode transformation is defined by the n-dimensional square
matrix H = {hij} [6]. Each row vector of H is perpendicular to one family of hyperplanes
forming the tiles.
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Dually, supernode transformation can be defined by n linearly independent vectors,
which are the sides of the supernodes. Matrix P contains the side-vectors of a supernode
as column vectors. It holds P = H−1. Formally supernode transformation is defined as
follows:

r : Zn −→ Z2n, r(j) =

[ �Hj�
j − H−1�Hj�

]
,

where �Hj� identifies the coordinates of the tile that index point j(j1, j2, . . . , jn) is mapped
to and j − H−1�Hj� gives the coordinates of j within that tile relative to the tile ori-
gin. Thus the initial n-dimensional index space is transformed to a 2n-dimensional one,
the space of tiles and the space of indexes within tiles. Indexes within tiles have to
be sequentially executed, while tiles themselves can be assigned to processors and ex-
ecuted in parallel according to a valid hyperplane schedule as we will see in Sections
3 and 4. The tiled space JS and the supernode dependence matrix DS are defined as
follows: JS = {jS|jS = �Hj�, j ∈ Jn}, DS = {dS|dS = �H(j0 + d)�, d ∈ D, j0 ∈
Jn|0 ≤ �Hj0� < 1} where j0 denotes the index points belonging to the first complete
tile starting from the origin of the index space Jn. The tiled space can be also written
as JS = {jS(jS

1 , . . . , jS
n )|jS

i ∈ Z ∧ lSi ≤ jS
i ≤ uS

i , 1 ≤ i ≤ n}. Each point jS in this
n-dimensional integer space JS is a distinct tile with coordinates (jS

1 , jS
2 , . . . , jS

n ).
Given an algorithm with dependence matrix D, for a tiling to be legal, it must hold

HD ≥ 0. This ensures that tiles are atomic and that the initial execution order is
preserved [5], [6]. In the opposite case any execution order of tiles would result in a
deadlock.

In this paper we assume that all dependence vectors are smaller than the tile size, thus
they are entirely contained in each supernode’s area, which means that |HD| < 1 [15] or
alternatively that the supernode dependence matrix DS contains only 0’s and 1’s. This
assumption is quite reasonable since dependence vectors for common problems are rela-
tively small, while tile sizes may result to be orders of magnitude greater in systems with
very fast processors. So, for a computation to communication grain to be meaningful tiles
are large enough to encapsulate all dependence vectors. In this case every tile needs to
exchange data only with its nearest neighbors, one in each dimension of Jn.

2.4. Computation Cost - Communication Cost
The number of index points contained in a supernode expresses the respective compu-

tation cost of this supernode (tile), and is calculated by det(P ). Thus we have Vcomp =
det(P ). The communication cost of a tile is proportional to the number of iteration points
that need to send data to neighboring tiles, in other words, the sum of dependence vectors
cutting the supernode’s boundaries. This can be calculated by the expression:

Vcomm(H) =
1

|det(H)|
n∑

i=1

n∑
k=1

m∑
j=1

hikdkj (1)

Practically, this formula computes and sums all possible hidj , which express the contri-
bution to communication of every dependence vector, to every tile boundary surface.
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If tiles along the same dimension are mapped to the same processor, dependence vectors
cutting the tile’s boundary surface in the respective dimension impose no interprocessor
communication. In that case, the communication cost is calculated by the expression:

Vcomm(H) =
1

| det(H)|
∑

i∈{1,...,x−1,x+1,...,n},j∈{1,...,m}
(H−xD)ij′ (2)

where H−x denotes the H matrix with the column vector vertical to the boundary surface
in the dimension of processor mapping extracted. A technique, presented in [7] and [16],
calculates the vector H that imposes the minimum amount of communication for a given
supenode size.

2.5. Scheduling of Tiles
If HD ≥ 0, tiles are atomic and preserve the initial execution order. Consequently the

tiled index space JS can be scheduled using similar techniques to the initial index space Jn.
In this paper we use linear schedules. Recall ([17]) that a point j ∈ Jn scheduled according
to a linear time schedule Π, will be executed at tj = �Πj+t0

dispΠ
�, where t0 = −minΠi : i ∈ Jn

and dispΠ = minΠdi : di ∈ D. Thus, a tile jS ∈ JS will be executed at tjS = �ΠjS+t0
dispΠ

�

3. Non-overlapping Schedule

In [8], Hodzic and Shang have presented a scheme for scheduling loops that have been
transformed through a supernode transformation. The optimal tile size g that minimizes
total execution time is determined by the actual parallel architecture parameters i.e.
communication to computation grain. Given the tile size, they calculate the optimal tile
transformation H that reduces communication cost for each tile. The rows of matrix H
determine the actual tile shape. Relative sizes for tile sides and shape are defined by
the dependence vectors of the algorithm, whereas tile volume (size g) is defined by the
hardware parameters. Once H is fully determined, it is applied to the original index space.
The resulting tiled space JS is scheduled using a linear time hyperplane Π. All tiles along
a certain dimension are mapped to the same processor. Total execution of tiles consists of
successive computation phases interleaved with communication ones. A processor receives
the data needed to execute a tile at time step i performs the computations and sends to
its neighboring processors the boundary data, which will be used for tile calculations in
time step i + 1.

Thus the total execution time is given by:

Tblock = P (g)(tcomp + tcomm), (3)

where tcomm = tstartup + ttransmit is the communication time, P (g) is the number of time
hyperplanes needed to execute the algorithm, tcomp the execution time of a tile (tcomp =
gtc), where tc is one Jn iteration’s computation time. tcomm can be expressed as the
communication startup latency (tstartup), and a factor expressing the transmission time
(ttransmit). Clearly the total execution time depends on tile size g, since it affects the
number of time planes (increase of tile size g leads to reduction of total time planes), the
computation cost (gtc) and the communication volume (Vcomm).
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Let us now consider the implementation of the above schedule in a message passing
environment. In this context, the execution time of a computation and a communication
phase consists of: the transmission time of the data to be received (ttransmit), the receive
startup time tstartup, the computation time tcompute, the send startup time tstartup and the
send transmission time(ttransmit).

receive sendcompute receive sendcompute

compute comm.

receive(data,p1)

send(data,p2)

compute comm. compute comm.

receive sendcompute

compute comm.

compute comm.

compute comm.

receive sendcompute

receive send receive sendcomputecompute

P2
P3
P4

P2
P3
P4

P2

P3

P4

P

P

P1

5

6

t2 t3 t4 t51t t6

Figure 1. Non-overlapping time schedule

The overall parallel loop execution consists of atomic computations of tiles, interleaved
with communication for the transmission of the results to neighboring processors. Since
the tiled space JS has only the unitary dependence vectors (see subsection 2.3), the
optimal linear time schedule can be easily proved to be: Π = [1 1 . . . 1]. For example, tile
jS(jS

1 , jS
2 , . . . , jS

n ) is executed at ΠjS − ΠjS
init time step, where jS

init is the first executed
tile. Given that jS

init =
−→
0 ⇒ ΠjS

init = 0, then jS is executed at jS
1 + jS

2 + . . . + jS
n time

step. The number of time hyperplanes P (g) in (3) is equal to ΠjS
final − ΠjS

init + 1, where
jS
final is the last executed tile.
In Fig. 1, the non overlapping schedule is shown for a tiled space using six processors.

Each time step between successive hyperplanes contains a triplet of receive-compute-send
non-overlapped subphases for each tile. All tiles along the same dimension are mapped
to the same processor.

This quite straightforward model of execution results in very good execution times, since
it exploits all inherent parallelism at the tile level. However, an important drawback of this
execution model is that each processor has to wait for essential data before starting the



8

computation of a certain tile, and wait for the transmission of the results to its neighbors,
thus resulting in significant idle processor time.

4. Overlapping Schedule

The linear schedule presented in the previous section achieves a moderate processor
utilization. All processor nodes are concurrently either computing or communicating
their results to their neighbors. However, what really imposes such inefficient processor
utilization, is the data flow between successive time steps. Specifically, it seems that com-
putations and respective communication substeps for each time step should be serialized
to preserve the correct execution order. Every processor should first receive data, then
compute and finally send the results to be used at the next time step by its neighbor.

It would be ideal if a node was able to receive, compute and send data at the same
time. Modern network interfaces (NICs) are equipped with DMA engines that can work
in parallel with the CPU. This means that some communication work can be overlapped
with actual CPU cycles. In addition to this, nonblocking message passing primitives
mitigate processor waits for the completion of the respective messaging operations. In
fact, even some nonblocking work needs the CPU initially, but most of it, including the
transmission phase, can be ideally overlapped with other useful computation. A much
more thorough look at the correct data flow in the non-overlapping case, reveals the
following interesting property: If we slightly modify the initial linear schedule, then we
could overlap some communication time with computations. This means that, in each
time step, the processor should send and receive data that is not directly dependent to
the data computed at this step. A valid time execution scheme comprises the following
actions during k time step: A processor receives neighboring data which will be used at
k + 1 time step, sends data produced at k − 1 time step and computes data received at
k − 1 time step (Fig. 2).

In [9] a linear hyperplane for the optimal time scheduling of Unit Execution Times-Unit
Communication Times grid task graphs was presented. Grid graphs are like iteration
spaces with unitary dependence vectors. Considering UET-UCT model, it is like having
communication phases that need equal time to computation ones. In [9], it was also
proven that the optimal space schedule for UET-UCT was to assign all points along
the maximal dimension to the same processor. The analogy of equal computation to
communication times with our case is obvious. If we could achieve a computation to
communication grain g, so that the time needed to communicate with the others is equal
to the time needed for the CPU to compute, then we could apply this slightly modified
linear schedule and the respective space schedule. In this case, the optimal time schedule
is Π = [2 . . . 2 1︸︷︷︸

pos i

2 . . . 2], where i denotes the maximum dimension. For example, tile

jS(jS
1 , jS

2 , . . . , jS
n ) is executed at Π′jS − Π′jS

init time step, where jS
init is the first executed

tile. Given that jS
init =

−→
0 ⇒ Π′jS

init = 0, then jS is executed at 2jS
1 + 2jS

2 + . . . + 2jS
i−1 +

2jS
i+1 + . . . + 2jS

n + jS
i time step.

In Fig. 2 the overlapping scheduling is shown. Consider, for example, processor P3

at k time step: while it makes the computation for a tile, it concurrently performs the
following: sends the results produced during k − 1 time step and receives data from
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Figure 2. Overlapping time schedule

neighbors, to be used during the computation of the next tile at k + 1 time step. Note
the arcs shown in Fig. 2. They depict the actual flow of data between successive time
steps (computes-sends-receives) in pipelined way. The outcome of this schedule is to have
successive computations overlapped with communication phases, thus theoretically 100%
processor utilization.

Similar to expression (3) the total execution time in the overlapping schedule is given
by:

Toverlap = P ′(g) max(tcomp, tcomm), (4)

where again here tcomm = tstartup + ttransmit.
The number of execution time steps denoted by P ′ in (4), which depends on tile volume

g, is equal to the execution time Π′jS
final + 1 of the final executed tile jS

final, given that
the initial tile is executed at time step 0. So, from (4) we get:

Toverlap = (Π′jS
final + 1) max(tcomp, tcomm), (5)

This theoretical result will be evaluated in the following sections by comparison with
experimental results of kernels using our scheduling theory. In the next sections, we will
describe the properties of two experimental platforms concerning the evaluation of our
scheduling theory.

Since the concept of overlapping of actions is crucial, it should be noted that the actions
initiated by a nonblocking call are overlapped with the actions initiated by calls following
the nonblocking call. On the contrary, a blocking call implies no overlapping of actions,
since a following call can be initiated only after the blocking call has completed.
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5. MPI - TCP/IP - FastEthernet

Message Passing Interface (MPI) library on top of TCP/IP networking layers over
FastEthernet network interface is the most common configuration for implementing and
executing parallel applications on computer systems. MPI (and the ongoing MPI-2) is
the de facto standard library specification for message-passing. TCP/IP is the network
protocol layering mostly used even in LANs, despite its wide area networking nature. The
descendant of 100Mbps Ethernet (FastEthernet) is 1 Gbps Ethernet (Gigabit Ethernet
- GbE) and is the standard interconnection technology used to build Beowulf clusters
serving as affordable parallel machines.

We used this configuration in order to evaluate our scheduling method. It was al-
ready known that MPI standard included the notion of nonblocking communication im-
plemented in the MPI I* commands (e.g. MPI Isend initiates a nonblocking send). Our
scheduling theory would be easily tested using pseudocode segments similar to the follow-
ing:

MPI_Isend(sbuf, neighboring_nodes);

MPI_Irecv(rbuf, neighboring_nodes);

compute();

MPI_Wait(MPI_Isend);

MPI_Wait(MPI_Irecv);

According to the MPI standard, in the above pseudocode segment the computation
(compute()) is performed concurrently with transmission and reception. However, after
the first experimental results, we noticed that the nonblocking method, compared to the
blocking one, had equal or even worse performance in terms of execution times, which
was against our intuition. This oddity was due to several reasons, which are described
below.

5.1. Platform dependent inefficiencies
All MPI implementations essentially follow the MPI standard, which was evolved con-

sidering portability as its first priority. Due to the fact that not every aspect of this wide
standard is implementable on every possible platform, many MPI implementations adopt
a more conservative approach, implementing only a part of all functions and routines,
exactly as specified by the standard. According to the MPI standard, MPI Isend and
MPI Irecv commands are the ones to be used for nonblocking communication. However,
since not every networking platform is capable to carry out nonblocking communication
calls (e.g. lack of DMA engine, protocol inneficiencies, etc.), in those cases both MPI
calls underneath use blocking primitives, resulting in a loss of their expected nonblocking
functionality.

Given the fact that MPI nonblocking commands could not deliver the nonblocking
performance needed, we considered bypassing MPI library routines and conduct our ex-
periments using Unix sockets as communication primitives. We decided to program on a
lower level, in order to acquire more accurate control over the communication process and
achieve the desired nonblocking features. In this way, we would also avoid the additional
buffer copying imposed by the use of MPI library. However, current networking proto-
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cols and hardware commodity were obstacles to true overlapping communication with
computation.

5.2. Protocol inefficiencies
Network programming in Unix environment is most times synonymous to socket inter-

face, which is the most common way of communication among Unix hosts. After initial-
izing the two endpoints of a communication, each node holds a socket descriptor which
can be used in collaboration with write and read system calls for sending and receiving
data, respectively. During the initialization phase, the communication type is determined
as either reliable or unreliable. MPI libraries always depend on reliable communication
(TCP/IP) and never on unreliable (UDP/IP), even though reliable communication is
slower, since they would have to implement the reliability procedure in application level.

In order to comprehend the mechanism of such communication, the following system
call is described in a reliable connection context:

(void) write(sd, buffer, len);

where sd is a socket descriptor, buffer is a pointer to the buffer where data are kept, and
len is the length of data measured in bytes. After issuing this system call, the following
actions take place: Firstly, the CPU execution mode turns from user mode to kernel mode
(Fig. 3). The data buffer, if larger than a certain threshold, is not sent as a whole but
is broken into smaller pieces. Each of these pieces is copied to kernel space by the CPU,
which also adds TCP, IP and Ethernet headers to the packet. CPU then programs NIC’s
DMA engine to transfer the packet to NIC’s buffers and can immediately perform other
tasks, including data computations. As soon as DMA finishes, CPU is interrupted to be
informed of that. The actions’ chain is shown in Fig. 3.

CPU

su
pe

r f
as

t

CPU

NIC

T
C

P

IP

E
T

H

user space
kernel space

tDMA

tcomputetDMAsetupt addheaderscopy2kerneltsyscallt

user space
kernel space

CPU

NIC

size
target
source

kernel

execution

process

execution

Figure 3. Successive sending phases for a packet, including CPU and NIC. (a) CPU
execution switches from user to kernel mode, (b) CPU copies data from user space to
kernel space, (c) CPU adds protocol headers, (d) CPU sets up DMA engine, (e) NIC
DMA transfers data to its buffers, while CPU is free for computations

The use of MPI, on top of this layering, decreases the overlapping time percentage, since
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all MPI communication actions, which are not included in the aforementioned hierarchy,
are buffering and bookkeeping operations and occupy the CPU exclusively.

5.3. Implementation
From the aforementioned facts, it is inferred that the only part of communication from

which CPU is alleviated and can perform useful computations, is during the DMA data
transfer to NIC’s buffers (Fig. 3e). Since such overlapping is not adequate for imple-
menting our scheduling theory, we decided to simulate our schedule using MPI on top
of TCP/IP over FastEthernet.

We ran our experiments on a cluster with 16 identical 500MHz Pentium III nodes. Each
node has 128MB of RAM and 10GB hard drive and runs Linux with 2.2.14 kernel version.
Each node runs its own OS kernel, installed in local drive to avoid NFS traffic during the
experiment’s time. The cluster nodes are interconnected using 100Mbps FastEthernet.
There exists a frontend machine serving as router, to isolate the cluster from the other
LAN, so that non-local network traffic is banned. The communication library used is the
MPICH implementation on MPI.

Our test application was a 3-D loop to be executed on the 16 nodes. We used a nested
loop with only one assignment statement i.e.:

for (i=1; i<DIMX; i++)

for (j=1; j<DIMY; j++)

for (k=1; k<DIMZ; k++)

A(i,j,k) = sqrt(A[i-1][j][k]) + sqrt(A[i][j-1][k]) + \

sqrt(A[i][j][k-1]);

We used square roots and floats to increase computation time at a reasonable value, so
as to efficiently control computation to communication grain. In this case, the optimal
tiling is in rectangular tile shapes. Each tile is a cube with ij, ik and kj sides. We
selected k dimension to be the largest one, so all tiles along k-axis are mapped to the
same processor P (i,j), i ∈ [0, 3], j ∈ [0, 3]. During each time step, every processor in the ij
plane with coordincates (i, j) receives from neighboring processors (i−1, j) and (i, j−1),
computes and sends to processors (i + 1, j),(i, j + 1).

For the overlapping case to achieve overlapping of computation and communication,
we need additional space compared to the non-overlapping case on each node to buffer
the surfaces that are received or being sent to every neighboring node, while altering the
data during the computation of (i, j, k) tile. The overall time schedule for k time step
and the extra buffer to achieve overlapping is shown in Fig. 4. The additional buffering
resembles the pipeline registers among consecutive pipeline stages, during the evolution
from a multicycle non-pipelined datapath to a pipelined one [18].

In order to compare both theories, we implemented both the overlapping (nonblocking)
and the non-overlapping (blocking) cases. The pseudocode for the blocking case is:

for i = 0 to max_i_tile-1
for j = 0 to max_j_tile-1
ProcB(i,j)

where: ProcB(i, j) is
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send(to processor, time produced)
receive(from processor, time to be used)

receive(from_proc(i−1,j), k+1)
receive(from_proc(i,j−1), k+2)receive(from_proc(i,j−1), k+1)
receive(from_proc(i−1,j), k+2)

send(to_proc(i+1,j), k−1)
send(to_proc(i,j+1), k−1)

send(to_proc(i+1,j), k)
send(to_proc(i,j+1), k)

k−1 k k+1

TIME

receive(from_proc(i−1,j), k)
receive(from_proc(i,j−1), k)

send(to_proc(i+1,j), k−2)
send(to_proc(i,j+1), k−2)

compute(proc(i,j), k−1) compute(proc(i,j), k) compute(proc(i,j), k+1)

k

j

i

receive(from_proc(i,j−1), k+1)

receive(from_proc(i−1,j), k+1)

send(to_proc(i+1,j), k−1)

send(to_proc(i,j+1), k−1)

Figure 4. Timing and extra buffering for the overlapping case

for k = 0 to max_k_tile-1 {
MPI_Recv(T(i-1, j), results(T(i-1, j), k))
MPI_Recv(T(i, j-1), results(T(i, j-1), k))
compute();
MPI_Send(T(i+1, j), results(T(i, j), k))
MPI_Send(T(i, j+1), results(T(i, j), k))

}

While the pseudocode for the nonblocking case is:

for i = 0 to max_i_tile-1
for j = 0 to max_j_tile-1
ProcNB(i,j)

where: ProcNB(i,j) is

for k = 0 to max_k_tile-1 {
MPI_Isend(T(i+1, j), results(T(i, j), k-1), &s1)
MPI_Isend(T(i, j+1), results(T(i, j), k-1), &s2)
MPI_Irecv(T(i-1, j), results(T(i-1, j), k+1), &r1)
MPI_Irecv(T(i, j-1), results(T(i, j-1), k+1), &r2)
compute();
MPI_Wait(s1);
MPI_Wait(s2);
MPI_Wait(r1);
MPI_Wait(r2);

}

In our experiments, MPI Ssend1 is used instead of MPI Send in the blocking case, in order
to simulate the absence of parallelism and overlapping in the blocking case. MPI Ssend

call returns when the message sent has been received from the receiving process.

1MPI Synchronous send
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5.4. Results
In Figures 5, 6 and 7 the improvement in the execution of the blocking and nonblocking

version of the algorithm is shown. The nonblocking version is much faster and it would
be even faster if there were a special subsystem that would handle the communication
part, so that it would be completely in parallel with the computation part.
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Figure 5. MPI over TCP/IP over FastEthernet: Results for 16x16x16384 space
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Figure 6. MPI over TCP/IP over FastEthernet: Results for 16x16x32768 space

The experiments were concerning three cases, depending on the size of initial Jn itera-
tion space. We selected a 16× 16× 16384 space, a 16× 16× 32768 and a 32× 32× 4096
space, where DIMX×DIMY×DIMZ represent the boundaries of i, j, k axes respectively. This
means that, for example, in the first case, i = 1 . . . 16, j = 1 . . . 16 and k = 1 . . . 16384.
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Figure 7. MPI over TCP/IP over FastEthernet: Results for 32x32x4096 space

We deliberately selected small i, j maximum values, so that k is always larger than the
other two. The tiled space will have k dimension as its larger one, so mapping all tiles
to the same processor is performed along the k-axis. This gave us the opportunity to use
all 16 processors for the different tiles projected in ij plane. Without lack of generality,
we selected unitary initial dependencies, thus the optimal tiling is a rectangular one. For
every one of the above three problems, we were using all 16 processors, that is, 4 pro-
cessors along each i and j dimensions. This means that all tiles, for example in the first
case, had sizes of 4×4×z where z was a variable (z is denoted as tile height, since it
is the size of tile along axis k). For all possible values of z, ranging from 4 to 32768

4
, we

ran both, complete, non overlapping and overlapping MPI programs, and calculated the
size of zoptimal for which the minimum completion time is achieved. Figures 5, 6 and 7
summarize our results for all three cases.

6. Implementation using Scalable Coherent Interface

In the previous section, there were several obstacles that hinted us from implementing
the proposed scheduling theory due to the customary network technologies used. We
could not allow for concurrent use of CPU and NIC due to limited capabilities of the
networking subsystem. This could be avoided if novel communication technologies such
as Scalable Coherent Interface (SCI) were used.

SCI supports a Distributed Shared Memory approach for communication among hosts.
An SCI communication scenario involves the following stages: A process in an SCI node
exports a memory segment which is imported by a process that resides in another SCI
node. Every imported memory segment is directly mapped to the PCI I/O space of the
PCI-SCI NIC. It is part of the importer’s (process) virtual memory through the prior
invocation of an SCIConnectSegment() driver call. When the importing node needs to
send data, it just writes it directly to the imported memory segment, while when it needs
to read data, it just reads it directly from the imported segment (Fig. 8).
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Figure 8. SCI load/store instruction over exported segment: (a) process on node A writes
value 100 to a location in the imported segment and the value is transferred to node B
exported segment, (b) process on node A reads a location in the imported segment and
the value 50 is transferred from node B exported segment

6.1. DMA transfers
Message data can be usually transferred in two ways; Programmed I/O (PIO) mode

and DMA mode. In PIO mode, CPU handles data transfer completely, which was the
case in the previous paragraph. The data transfer of 1Kwords, involves the initial copying
of these words from main memory to the NIC’s buffers; the task would be performed by
the host’s CPU. From a parallel application’s point of view, these are considered “lost”
CPU cycles, since useful calculations could have been executed instead.

On the contrary, using DMA mode, CPU only programs the NIC’s DMA engine with
the information of which data to transfer from main memory and where to send it (Fig. 9).
CPU is not blocked during the transfer and can perform other (useful) tasks.

MEM

SA

0

SA+SZ
CPU

1

2

DMA controller

start_address= SA
size= SZ
read/write= R/W
start= GO

SCI
card SCI network

Figure 9. DMA or nonblocking send
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In order to send data using DMA, it is essential for the data to be stored contiguously
in physical memory. Being able to handle DSM communication using PIO mode, SCI
has developed mechanisms that enable efficient memory allocation and usage. Using
special SCI driver calls, the system returns physically contiguous allocated memory. This
is performed using the get free pages() kernel routine. The allocated memory is
first “pinned down” and then mapped to user’s virtual memory (Fig. 10). User is able
to read/write that memory region like the ordinary memory regions returned by LIBC
malloc(). Despite the fact that SCI DMA transfer is only invoked as a kernel system
call, the complete transfer of the specific memory area will be performed with only one
DMA invocation.

CPU

VMA

PMA

SCI

process

SCI
network

memory mapped
"RAM device"

segment

mapped to

Figure 10. Locked (pinned down) and memory mapped “RAM device” for SCI communi-
cations. While CPU computes data, results are stored to physically contiguous memory,
ready to be sent as a whole using DMA

6.2. Implementation
We used 9 800MHz Pentium-III nodes interconnected with an SCI network based on

Dolphin’s D330 SCI NICs. Each node has 128MB of main memory. The OS is Linux
with kernel from the 2.4.x series. In order to assess the benefits of the proposed schedul-
ing theory, we ran two type of experiments. The first one implements the overlapping
(nonblocking) algorithm and is compared to the second one which implements the non-
overlapping (blocking) algorithm. The test application was implemented using C and
the SISCI API [12]. We also compare our overlapping experimental results to the results
calculated using the theoretical formula given by equation 5.

We conducted our SCI experiments using the same 3-D loop used in the MPI over
TCP/IP over FastEthernet case. Our 9 cluster nodes were organized as a 3 × 3 array of
processors. The optimal tiling is in rectangular tile shapes. Each tile is a cube with ij,
ik and kj sides. Without lack of generality, we selected k dimension to be the largest
one, so all tiles along k-axis are mapped to the same processor P (i,j), i ∈ [0, 2], j ∈ [0, 2].
The data exchanges, timing and buffering characteristics of the MPI case (Fig. 4) are also
valid in this case.
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According to expression (5), the theoretical total execution time for the SCI overlapping
case is:

Toverlap(z) = (2(xi + xj) + xk + 1) max(tcomp, tcomm), (6)

where in our case, jS
final(xi, xj, xk) is the last executed tile according to the overlapping

scheduling theory.
We assume that tcomp = tcomm so max(tcomp, tcomm) = tcomp. Expression (6) does not

include the communication time that cannot be overlapped with computation time. So
(6) must be enriched with terms tstart dma and tsync, that represent time to initiate a DMA
procedure and synchronization between nodes, respectively. So (6) becomes:

Toverlap(z) = (2(xi + xj) + xk + 1)(tstart dma + tcomp + tsync). (7)

In the above expression, xi is equal to DIMX/3−1, similarly xj is equal to DIMY/3−1, and
xk is equal to DIMZ/z − 1. Tile’s height is denoted by z and since a tile contains g = xyz
iteration points and x, y are already known as problem variables, in our experiments only
z is unknown.

Due to the need for synchronization between any two successive time steps, nodes
have to signal each other using SCI interrupts, which impose a constant delay, tsync =
4×tsci interrupt. We ran several ping-pong tests and derived the values tstart dma = 49.2usec
and tsci interrupt = 18.8usec.

The total computation time for the execution of each application, either overlapping or
non-overlapping, is constant and can be seen in Fig. 11 for the “non-overlapping case” and
the “overlapping case without SCI”. The latter concerns the execution of the overlapping
case, having commented out all the SCI communication functions. In this way we only
measure the pure computation time tcomp, which is calculated using the following code:

gettimeofday(start, NULL);
compute();
gettimeofday(end, NULL);

The computation time for the overlapping case, considering also the SCI communica-
tion functions, is shown in Fig. 11. The decreasing plot is due to the frequent kernel
invocations which are servicing interrupts for SCI communication: local CPU, apart from
compute(), also handles both SCITriggerInterrupt executed on a neighboring node
and SCIPostDMAQueue executed on the current node. In the beginning of each experi-
ment, the tile size is small, so there is a substantial number of exchanged interrupt signals
(SCITriggerInterrupt) and data transmissions (SCIPostDMAQueue) routines existing in
main loop body. When the number of iterations is reduced due to increased tile size,
the CPU time consumed on handling interrupts is decreased, and finally converges to the
non-overlapping case. Thus, the pure compute time used to calculate the theoretical plots
should come from the non-overlapping case.

The internal part of the nonblocking program’s main loop can be seen in Table 1.
Since send dma() is not blocking, the compute() call is concurrently executed. After the
execution of wait for dma(), it is assured that both computation and communication are
already completed. The blocking program is implemented by swapping the compute()

and send dma(n+1,data) calls.
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Figure 11. SCI: Comparison of Experimental Computation Times for 12 × 12 × 512K

Table 1
Internal Part of Program’s Main Loop.

sequence of functions respective SCI calls Action performed
trigger interrupt(n-1) SCITriggerInterrupt() Inform “prev” node(s) “Ready to accept data”
wait for interrupt(n+1) SCIWaitForInterrupt() Wait till “next” node(s) ready to receive data
send dma(n+1, data) SCIPostDMAQueue() Init of DMA transfer to neighboring nodes
compute() compute() Computation
wait for dma() SCIWaitForDMAQueue() Wait for DMA to complete
trigger interrupt(n+1) SCITriggerInterrupt() Inform “next” node(s) “Data have arrived”
wait for interrupt(n-1) SCIWaitForInterrupt() Wait till “prev” node(s) has finished sending

The above test application was executed using initial J3 index spaces with various
DIMX×DIMY×DIMZ sizes. Typical experimental values for DIMX=DIMY were 12 or 24 and
for DIMZ were 256K, 512K, or 2048K. We measured execution times for the following
overlapping and non-overlapping cases 12×12×512K (also in [19]), 24×24×256K and
24×24×2048K.

Overlapping and non-overlapping overall execution times for each problem are plotted
in Figs. 12, 13 and 14. It can be seen that, in all cases, overlapping (pipelined) execu-
tions, which take advantage of the cluster’s high performance communication features,
are considerably faster than the non-overlapping (blocked) ones.

In Fig. 15, the experimental result is compared to our analytical calculations derived
from (7). The plot for the experimental time measured, is very close to the theoretical
function. This is due to the fact that (7) includes a thorough and detailed analysis of
actual possible time delay parameters. For example, from the minimum of each function
in Fig. 15, it can be easily calculated that the difference between experimental minimum
and theoretical minimum is nearly 0.2%, achieved for values of tile heights, which are very
close to each other.
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Figure 12. Experimental Total Execution Times for 12× 12 × 512K
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Figure 13. Experimental Total Execution Times for 24× 24 × 256K

7. Conclusions

In this paper we proposed a novel approach for the problem of minimizing the com-
pletion time for loop tiles by overlapping computation and communication for each tile
execution. Both experimental results using SCI and simulation results using MPI show
that our scheduling theory achieves better execution times than a corresponding non over-
lapping one. Experimental results have also shown that the theoretically calculated overall
time, following the optimal hyperplane transformation, is very similar to the experimental
results.

The only available hardware to conduct experiments was PCI-SCI NICs which use
kernel DMA initialization. However, if we could avoid all kernel initialization of DMA,
then the initial DMA startup time could have been considerably reduced. Since DMA is
initiated through calls from kernel level, we thus introduce extra overhead, which could
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Figure 15. Comparison of Experimental and Theoretical Minima (Fig. 13 zoomed in)

increase overall execution time. User Level Networking architectures, such as U-Net [20]
and the ensuing VIA standard [21], allow for direct access of the NIC from virtual memory
areas and without any kernel intervention (see [22], [23]).

At the moment there is no public available hardware VIA implementation for PCI-SCI
cards, that uses DMA as communication mode. In fact, in [24], a VIA solution for SCI
was presented, using PIO as the only available communication mode. It is obvious that we
essentially need overlapping, so even avoiding kernel system calls’ overhead is not enough.
In [25] a novel hardware implementation of a PCI-SCI bridge is presented, supporting both
downstream and upstream Address Translation Tables (ATTs), thus capable of exporting
any arbitrary virtual memory page and access it directly by DMA, but this is also not
available to us. Intuitively, we expect that if we achieve 100% overlapping of computation
with communication, then overall execution time using our scheduling theory will reach
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its minimum.
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