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Abstract

So far, the privileged instructions MONITOR and MWAIT

introduced with Intel Prescott core, have been used mostly

for inter-thread synchronization in operating systems code.

In a hyper-threaded processor, these instructions offer a

“performance-optimized” way for threads involved in synchro-

nization events to wait on a condition. In this work, we ex-

plore the potential of using these instructions for synchroniz-

ing application threads that execute on hyper-threaded proces-

sors, and are characterized by workload asymmetry. Initially,

we propose a framework through which one can use MON-

ITOR/MWAIT to build condition wait and notification primi-

tives, with minimal kernel involvement. Then, we evaluate the

efficiency of these primitives in a bottom-up manner: at first,

we quantify certain performance aspects of the primitives that

reflect the execution model under consideration, such as re-

source consumption and responsiveness, and we compare them

against other commonly used implementations. As a further

step, we use our primitives to build synchronization barriers.

Again, we examine the same performance issues as before, and

using a pseudo-benchmark we evaluate the efficiency of our

implementation for fine-grained inter-thread synchronization.

In terms of throughput, our barriers yielded 12% better per-

formance on average compared to Pthreads, and 26% com-

pared to a spin-loops-based implementation, for varying levels

of threads asymmetry. Finally, we test our barriers in a real-

world scenario, and specifically, in applying thread-level Spec-

ulative Precomputation on four applications. For this multi-

threaded execution scheme, our implementation provided up to

7% better performance compared to Pthreads, and up to 40%

compared to spin-loops-based barriers.

1 Introduction

Simultaneous Multithreading (SMT) [8] allows a super-

scalar processor to issue instructions from multiple indepen-
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dent threads to its functional units, in a single cycle. The mo-

tivation behind this technique is to maximize the utilization of

processor resources by exploiting the thread-level parallelism

that can be extracted from an application. Hyper-threading

technology [6] is Intel’s two-threaded, low-end approach to

SMT. In a hyper-threaded processor, almost all resources are

shared, and only the architectural state, along with any control-

flow related structures, are replicated for each thread.

In such an “all-shared” environment, implementation of

synchronization is a key factor for multithreaded performance.

Synchronization primitives based on spin-wait loops have been

commonplace in traditional multi-processor systems, due to

their simple implementation and the high responsiveness, as a

result of their operation entirely at user-space. In an SMT en-

vironment, such primitives can incur significant performance

penalty, especially when application execution entails situa-

tions where one or more threads should wait on synchroniza-

tion events for a long period. In modern out-of-order proces-

sors, a spin-loop, which typically comprises of a memory value

test and a subsequent branch, is dynamically unrolled multi-

ple times by the scheduling units of the processor, because the

branch can be easily predicted and no data dependences exist.

In this way, the spinning thread, even though not performing

any useful work, inserts a significant number of instructions in

the pipeline that compete with the peer thread for execution

resources. Additionally, upon update of the spin-loop vari-

able, all speculatively issued instructions of the spinning thread

that have not yet committed, must be discarded, which incurs

a costly pipeline flush penalty.

Regarding SMT, Tullsen et al have proposed hardware ex-

tensions to support fine-grained synchronization, while ad-

dressing the aforementioned performance issues [9]. In their

simulated SMT model, the processor provides directly explicit

acquire and release primitives. It is extended with a small

structure, the lock-box, with one entry per context, contain-

ing the address of the lock, the address of the locking instruc-

tion and a valid bit. When a thread fails to acquire a lock, the

address of the lock and the address of the locking instruction

are stored in that thread’s entry. The thread then blocks and
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is flushed from the processor. When a thread releases a lock,

hardware performs an associative comparison of the released

lock against all lock-box entries. On finding a thread blocked

on that lock, it is awakened and restarted from the locking in-

struction. This mechanism enables transfer of lock state be-

tween threads in very few cycles, and furthermore eliminates

resource waste.

A hyper-threaded processor does not provide such an ex-

plicit mechanism for low-latency, resource-friendly synchro-

nization directly at the hardware level. There are other tech-

niques that could be employed in order to mitigate the exces-

sive resource consumption of spin loops, which, however, can-

not approach their high responsiveness. First, we could use

primitives that resort to OSmediation to handle long condition-

wait periods. In this way, the waiting thread would yield its

logical processor and release all its resources (transition from

Multi-Threaded to Single-Threaded mode), but its notification

and resumption upon condition satisfaction would be expen-

sive in terms of cycles, due to the invocation of the scheduler.

A second solution would be to loosen the spinning. The

rationale behind that is that the waiting thread actually spins

much faster than required, i.e. than the time needed by the

memory bus to perform a single memory update. Intel recom-

mends the use of PAUSE instruction for this purpose, which

introduces a slight delay in the loop and de-pipelines its exe-

cution, preventing it from aggressively consuming processor

resources. These are resources that are shared dynamically

between hyper-threads (e.g., execution units, caches, fetch-

decode-schedule-retirement logic). Although in this way the

cost of spinning is reduced, it is not entirely eliminated, be-

cause some resources designed to be statically partitioned be-

tween the two hyper-threads (e.g., micro-op queues, load-store

queues, re-order buffers), are not released. These are mostly

intermediate buffering queues that guarantee independent flow

of the instructions of the two threads through the pipeline.

In Multi-Threaded mode, these queues are split so that each

thread can use at most half of their entries. When a thread

executes a PAUSE, it continues to occupy its share of entries.

Thus, the spinning thread still holds a portion of resources that

could be valuable for the peer thread to execute faster.

By using the privileged HALT instruction, a logical proces-

sor can relinquish all of its statically partitioned (and shared)

resources, make them fully available to the other logical pro-

cessor and stop its execution, going into a sleeping state. Later,

as soon as it receives an inter-processor interrupt (IPI) from the

active processor, it resumes its execution and the resources are

partitioned again. Apart from requiring kernel privileges to en-

ter the halt state and cause the processor to exit from it, which

translate into system call overhead, the transitions themselves

into and out of the halt state incur extra overhead in terms of

processor cycles, as well.

Intel’s Prescott core introduced a new pair of instruc-

tions, MONITOR and MWAIT [4]. MWAIT enables a log-

ical processor to enter into an “implementation-dependent

performance-optimized” state while waiting for a single store

to the address range set up by MONITOR. In a hyper-threaded

environment, all shared and partitioned resources of a logi-

cal processor are released with MWAIT, as with HALT. Like

HALT, MONITOR/MWAIT must be executed at kernel-space,

as well. Unlike HALT, however, which requires an expensive

IPI delivery to awaken an idle context, MONITOR/MWAIT

just require a single memory store for the same purpose.

So far, MONITOR/MWAIT instructions have been used

mostly for inter-thread synchronization in operating systems

code. In particular, they are used to implement the idle loop

of the scheduler, where a processor waits on a memory lo-

cation (the data structure that corresponds to its work queue)

until it is notified that there is some task that needs to be

scheduled. In this work, we explore the potential of using

MONITOR/MWAIT instructions to synchronize application-

level threads, which execute on hyper-threaded processors and

are characterized by workload asymmetry. The rest of the pa-

per is organized as follows: in Section 2 we give a descrip-

tion of MONITOR/MWAIT. In Section 3 we propose a frame-

work through which one can use these privileged instructions

to build condition-wait and notification primitives, with the

least possible kernel involvement. In Section 4 we present a

bottom-up evaluation of our primitives, starting from an analy-

sis of certain performance aspects of their implementation that

reflect the execution model we consider, and ending to an eval-

uation of MONITOR/MWAIT-based barriers in real-world ap-

plications. Finally, Section 5 summarizes our conclusions and

discusses future work.

2 Description of MONITOR/MWAIT

The MONITOR instruction sets up an effective address

range that is monitored by the executing logical processor for

write-to-memory activities. MWAIT places the logical pro-

cessor in a “performance-optimized” state (which may vary

between different implementations) until a write to the mon-

itored address range occurs. This implements a condition-wait

as close as possible to the hardware level, with the advantage

that it prevents resource waste on a hyper-threaded processor

and the notification of the waiting thread does not require op-

erating system intervention but a single memory value update.

In particular, MONITOR sets up monitoring hardware to

detect stores to an address range (generally a cache line) de-

termined by the contents of EAX register. The MONITOR in-

struction relies on a state in the processor called the monitor

event pending flag. Execution of the MONITOR instruction

arms the monitoring hardware and clears the flag. A write to

the address range being monitored, as well as other events such

as interrupts, will trigger the monitoring hardware and set the

flag. The state of monitoring hardware is not architecturally

visible except through the behavior of the MWAIT instruction.

MWAIT puts the processor into the special low-

power/optimized state until a store to any byte in the address

range being monitored is detected, or if there is an interrupt

or exception that needs to be serviced. MWAIT is architec-

turally identical to a nop instruction. It is effectively a hint

to the processor to indicate that it may choose to enter an
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implementation-dependent optimized state while waiting for

an event or for a store to the address range set up by the pre-

ceding MONITOR instruction. On a hyper-threaded processor,

a thread that calls MWAIT causes its logical processor to relin-

quish all its shared and partitioned resources and go to sleep.

As we mentioned, exits from the MWAIT state could be due

to a condition other than a write to the triggering address. Soft-

ware should explicitly check the current value of the triggering

address against an original value, in order to determine if the

exit from the MWAIT was due to a write to the monitored re-

gion or due to other event. If the exit was not due to a write

then MWAIT must be executed again. However, MWAIT does

not re-arm automatically the monitoring hardware, and thus

MONITOR has to be executed again, as well. In other words,

MONITOR/MWAIT need to be executed in the same loop.

The address provided to MONITOR instruction effectively

defines an address range, within which a store will cause the

exit from the optimized state. Write operations intended to

cause the exit from this state must occur within this range.

Thus, in order to avoid missed wake-ups, the data structure

used to monitor stores must fit within the smallest monitor line

size, and must be properly aligned so that it does not cross this

boundary. Otherwise, the processor may not wake up after a

write intended to trigger an exit from MWAIT. Similarly, write

operations not intended to cause exit from the optimized state

should not write to any location within the monitored range.

Thus, in order to avoid false wake-ups, we should probably

pad the data structure used to monitor writes to the largest

monitor line size. This would preclude allocation of unrelated

data structures within the monitored range. In our system, the

smallest and largest monitor line sizes are both 64 bytes.

3 Framework for Implementing Synchroniza-

tion Primitives

In their initial implementation, MONITOR and MWAIT in-

structions are available at privilege level 0 only. For this rea-

son, in order to be able to implement a condition-wait primitive

to be used at the application level, we had to extend the Linux

kernel with a system call through which we can have access to

these instructions. The overhead of this system call is the least

that should be paid by any user-level application that wants

to use MONITOR and MWAIT. What comes next, in terms

of extra cost, is the way that condition-wait (occurring always

at kernel-space) and notification primitives communicate each

other the contents of the triggering address.

In other words, we had to decide where to allocate the mon-

itored memory region. If it is allocated at user-space, the ker-

nel has to access the process address space every time it must

check the contents of the monitored memory. This would re-

quire copying the monitored memory value to a kernel-space

buffer (with a function like copy from user) within the

MONITOR/MWAIT loop. If it is allocated at kernel-space,

then we should add an additional system call through which a

process can change its value. Consequently, both cases would

incur notable extra overhead, either at condition-wait, due to

multiple copy operations of the contents of the triggering ad-

dress, or at notification, due to system call overhead.

In order to establish the fastest possible transfer of state

between kernel and user-space, we followed an alternate ap-

proach: we chose to allocate the monitored memory region in

kernel-space, in the context of a special character device, and

then map the device to user-space. In this way, the memory re-

gion can be directly accessed both from kernel and user-space,

without any copy operations or additional system calls required

to access its contents. This mapping is depicted in Fig. 1.
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Figure 1. Mapping the monitored memory re-

gion allocated at kernel-space to process ad-
dress space.

The driver for the special character device (kmem mapper)

is implemented as a loadable module. The monitored mem-

ory region is allocated when loading the module. Specifically,

at module’s initialization function, we call kmalloc to al-

locate 4096 bytes physically contiguous (effectively, a page

frame in physical memory). The value returned by kmalloc

initializes a pointer in kernel virtual address space that des-

ignates the start of the 64-byte sized monitored memory re-

gion (*mwmon mmap area). Of course, we take care so

that this region is properly aligned to the smallest monitor

line size boundary, as discussed in section 2. Furthermore, to

prevent the containing page from being swapped to disk, we

set the PG reserved flag of the corresponding page frame.

The mwmon mmap area pointer is hard-coded in the kernel’s

source and exported as a kernel symbol, and as we will see,

provides the handle for the system call that implements the

condition-wait to access the monitored memory region.

We implement three methods for kmem mapper: open,

mmap and close. In open and close methods, all bytes

of the monitored region are initialized to an original, “un-

notified” value (MWMON ORIGINAL VAL). Mmap method

does the whole work: it calls remap pfn range, with

mwmon mmap area among the arguments, to remap the

driver allocated buffer (containing the monitored mem-

ory region) to user-space, when the user program mmap’s

kmem mapper. The address returned by mmap will point

to the start of the monitored memory region, exactly as

mwmon mmap area does in kernel side. At module’s cleanup

function, the PG reserved bit of the allocated page is

cleared and the page is kfree’d.
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After establishing fast communication between kernel and

user-space, the implementation of a system call for condition-

wait using MONITOR and MWAIT is straightforward. We ex-

tended the Linux kernel with the mwmon mmap sleep sys-

tem call, as shown in Listing 1.

Listing 1. System call for implementing
condition-wait using MONITOR/MWAIT.

/* Pointer to memory allocated by device driver */

char *mwmon_mmap_area;

EXPORT_SYMBOL_GPL(mwmon_mmap_area);

#define MWMON_ORIGINAL_VAL ’a’

#define MWMON_NOTIFIED_VAL ’b’

asmlinkage long sys_mwmon_mmap_sleep(void)

{

do {

local_irq_disable();

monitor(mwmon_mmap_area,0,0);

local_irq_enable();

if(*mwmon_mmap_area == MWMON_NOTIFIED_VAL)

break;

mwait(0,0);

} while (*mwmon_mmap_area != MWMON_NOTIFIED_VAL);

*mwmon_mmap_area = MWMON_ORIGINAL_VAL;

return 0;

}

After having loaded the module, the steps that should be

followed in a typical multithreaded program in order to use

the synchronization primitives based on MONITOR/MWAIT

instructions, are the following: At initialization phase, the pro-

gram should open kmem mapper for read and write, and then

mmap it in its address space (again, with read and write protec-

tion flags set). A thread that wishes to wait on a condition, calls

mwmon mmap sleep (without any argument). A thread that

wishes to notify the waiting thread, sets a random byte within

the monitored memory region to MWMON NOTIFIED VAL

value. The monitored memory region starts from the address

returned by mmap, and ends after 64 bytes. At finalization, the

program unmaps and then closes the device.

4 Performance Evaluation

We evaluate the efficiency of our synchronization primitives

in a bottom-up manner: First, we compare our primitives with

other possible implementations, by measuring directly various

aspects of their performance such as resource consumption and

responsiveness. As a second step, we use our primitives to

build synchronization barriers. We quantify the same perfor-

mance issues in this case, as well, and furthermore, we mea-

sure overall barrier efficiency through a manually constructed

pseudo-benchmark. Finally, we evaluate our barrier implemen-

tation in real-world applications, in the context of applying

thread-level speculative precomputation on them.

In every step of the evaluation process, we have considered

an application model where two threads are executing on the

two contexts of a hyper-threaded processor, with each thread

occupying persistently a specific context throughout execution.

These threads are characterized as asymmetric, mainly due to

the amount of work that each thread executes, rather than the

kind of work of each (e.g. floating-point and integer compu-

tations).Therefore, the common case scenario we examine in-

volves one heavyweight thread (also referred as worker) per-

forming computations throughout its entire execution, and one

lightweight thread (also referred as helper or waiter) whose

execution alternates between short periods of useful work and

long idle periods. When in idle mode, the lightweight thread

waits until it is notified by the heavyweight before proceeding

(e.g., through a condition variable or a barrier). An example

of this execution scenario is depicted in Fig. 2a. In this case,

the two threads are synchronized with barriers. In each phase,

helper performs only a small amount of work which is intended

to facilitate the execution of worker at the next phase. Thus,

worker is always busy while helper is periodically throttled.

In real applications, the lightweight thread could be a helper

thread that facilitates the execution of the main thread, e.g. by

prefetching data from main memory into a shared cache, by

performing network I/O and message processing in distributed

memory parallel applications, by performing disk request com-

pletions in I/O-bound applications, etc.
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Figure 2. (a) Application model under consider-
ation. (b) Execution scenario for the evaluation
of condition-wait and notification primitives.

This discussion reveals a number of requirements that must

be met in order the synchronization primitives to be effective

for this execution model. First, the helper thread must not in-

troduce significant impediment to the worker thread whenever

it waits on synchronization events, by consuming shared re-

sources. Second, the helper thread must resume as fast as pos-

sible from its sleep each time it is notified by the worker thread,

in order its actions to be timely and accurate. This requirement

becomes more important as the need for more fine-grained or-

chestration of the helper thread’s actions increases. Finally,

the time that the main thread needs to invoke a synchronization

primitive in order to notify the helper, must be as little as possi-

ble. Again, this is substantial in cases of frequent synchroniza-

tion between threads. Summarizing, our primitives must incur

low resource consumption, high responsiveness and low call

overhead. Normally, these requirements are conflicting, e.g.

fast propagation of state changes requires repetitive checks of

memory values, and thus can consume measurable processing

and memory bandwidth. In this study, we look for an option

that best balances these requirements.
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4.1 Experimental setup

We experimented on an Intel Xeon processor, running at

2.8GHz. This processor is based on Netburst microarchitec-

ture, and is one of the first mainstream chips to encompass

low-end simultaneous multithreading capabilities. The operat-

ing system was Linux v. 2.6.13 for the x86 64 ISA. We used

the NPTL library for the creation and manipulation of threads.

To force the threads to be scheduled on a particular proces-

sor, we used the sched setaffinity system call. All user

codes were compiled with gcc v. 4.1.2 using the O2 optimiza-

tion level, and linked against glibc v. 2.5.

4.2 Evaluation of performance characteris-
tics of synchronization primitives

Initially, we have considered an execution scenario like this

presented in Fig. 2b. There are two threads, each scheduled on

a specific context of a hyper-threaded processor. The heavy-

weight thread performs a fixed amount of floating-point work

(a 512× 512 matrix multiplication), while the lightweight just

waits until notified by the former when it finishes its compu-

tations. For each version of synchronization primitives we ex-

amine, we measure the following:

• Twork: the time required for the worker to complete its com-

putations. The larger this time is, the more disturbing is the

co-existence of the waiting thread on the peer context.

• Twakeup: the time between the notification of the waiting

thread and the moment that it is actually awakened. This is a

direct indication of the responsiveness of the wait primitive.

• Tcall: the time that the worker thread spends in invoking the

appropriate notification primitive.

We evaluate and compare the following options for the

primitives for condition-wait and notification of threads: our

proposed implementation with MWAIT/MONITOR instruc-

tions (referred to as mwmon), spin-wait loops that use the

PAUSE instruction (spin-loops), spin-wait loops that use the

HALT instruction (spin-loops-halt), and the synchronization

primitives of the NPTL library (pthreads).

In mwmon, the waiter calls mwmon mmap sleep to go to

sleep, and it is awakened when the main thread updates the

monitored memory region. This process has been already de-

scribed in section 3. In spin-loops version, the waiting thread

spins repeatedly on a user-level variable, until the main thread

updates its value. In order to make the spin loop less aggressive

than it is required (as explained in section 1), we embedded the

PAUSE instruction in the loop body.

The spin-loops-halt implementation is quite the same, with

the difference that the waiting thread invokes the HALT in-

struction instead of PAUSE, and upon notification, the worker

thread sends additionally an inter-processor interrupt after up-

dating the user-level variable, to awaken the halted thread. In

this way, the waiting thread puts its processor into a suspended

state, offering all of its resources for exclusive use by the peer

thread. It may be awakened periodically by IPIs sent by the

OS (e.g. timer interrupts), but will exit the loop only when it

notices the change in the variable’s value. To be able to use the

privileged instruction HALT and send IPIs from userspace, we

extended the Linux kernel with appropriate system calls.

The fourth alternative we examined was the native imple-

mentation of condition variables in the Pthreads library. The

latest version of NPTL library we used, makes use of futexes,

a mechanism provided by the Linux kernel as a building block

for fast userspace locking. Further details on the internals of

the mechanism are out of our scope, however a good discus-

sion is done in [3]. In this implementation, a thread that waits

on a condition variable (via pthread cond wait) makes

a futex system call with a FUTEX WAIT argument, which

causes the thread to be suspended in the kernel. The thread

is actually descheduled, and assuming that there are not other

runnable processes, all its resources are released and made

available to the other thread (i.e. the processor switches from

Multi-threading to Single-threading mode). When the worker

notifies the blocked thread (via pthread cond signal),

it actually calls futex with a FUTEX WAKE argument to

awaken and reschedule the waiter.

Primitive
Work time

(in seconds)

Wakeup latency

(in cycles)

Call latency

(in cycles)

spin-loops 4.2446 (±0.2987) 584 (±191) 785 (±223)

spin-loops-halt 3.6243 (±0.3036) 37470 (±3975) 27813 (±3768)

pthreads 3.5919 (±0.2367) 116989 (±5795) 70042 (±3569)

mwmon 3.4821 (±0.2996) 25381 (±2426) 5470 (±545)

Table 1. Performance of various synchroniza-

tion primitives for condition-wait and notifica-
tion of threads (see Fig. 2b).

Table 1 presents the results from the evaluation of each im-

plementation on the execution scenario presented in Fig. 2b.

We have repeated each experiment multiple times (50), and

we present the average values from all measurements. As ex-

pected, spin-loops provide minimum response time and call

overhead, since it does not invoke any OS intervention, but it

is the most aggressive in terms of resource consumption. On

average, the spinning thread decelerates worker thread 19%

more than the other three implementations. However, de-

creased interference of the waiting thread in these implemen-

tations comes at the cost of two or three orders of magnitude

larger wakeup and call latencies. In particular, pthreads suffer

the worst wakeup and call times, possibly due to the largest

kernel control paths for notifying and rescheduling the waiting

thread. Inmwmon, the waiting thread resumes 47% faster com-

pared to spin-loops-halt, and has almost 5 times less call over-

head. This implies that the “performance-optimized” sleep-

ing state of MWAIT is probably more responsive than the state

of HALT, yet equally resource-conserving. Obviously, send-

ing IPIs through system calls to awaken the waiting thread is

far more expensive than a single variable update in user-space.

Regarding work time, the last three implementations perform

equally well, with mwmon performing slightly better. Overall,

mwmon is the option that best balances low resource consump-

tion, high responsiveness and reduced call overhead.
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4.3 Evaluation of barrier implementations

Using our primitives for condition-wait and notification

with MONITOR/MWAIT, we were able to build synchroniza-

tion barriers. These barriers are intended to be used in the ex-

ecution scenario presented in the beginning of this section, i.e.

by a pair of threads executing on hyper-threads. They lack the

generality of other implementations, posing limitations regard-

ing the number of threads that can synchronize on a single bar-

rier or the number of barrier variables that can be in use at any

time during application execution, but they can be extended

in a straightforward manner in order to overcome these short-

comings (e.g., associating multiple monitored memory regions

with different barrier variables, using per-physical package lo-

cal mwmon-like barriers to build global, hierarchical barriers,

etc.). In this work, our interest concentrates mainly on the effi-

ciency of our implementation on the execution model we con-

sider, rather than the generality of use.

The basic points of our barrier implementation (henceforth

called mwmon) are presented in Listing 2. Each thread that en-

ters the barrier atomically increases a global counter using a

spin-lock. The waiter thread makes the barrier available (re-

leases the lock) before suspending, and it is awakened when

the last thread updates the monitored memory region. In order

to make the barrier reusable and avoid deadlocks, e.g. in case it

is used within a loop, we count departure of threads apart from

counting their arrival, using atomic decrement operations. The

barrier is made available for subsequent uses only by the last

thread that leaves it. In this way, a thread cannot enter a bar-

rier if there is another thread that has not yet departed from the

previous instance of this barrier.

Listing 2. Sample barrier implementation with
MWAIT/MONITOR-based primitives.

void mwait_barrier(mwait_barrier_t *barrier)

{

unsigned int total = barrier->total;

spin_lock(&barrier->lock);

++barrier->gathered;

if (barrier->gathered == total) { /*last thread*/

*mmapped_device_memory = MWMON_NOTIFIED_VAL;

} else { /*intermediate thread*/

spin_unlock(&barrier->lock);

mwmon_mmap_sleep();

}

/*Is this the last woken thread? If yes, then unlock.*/

if (atomic_dec_and_test(&barrier->gathered))

spin_unlock(&barrier->lock);

}

The rest implementations we tested include a version of bar-

riers with sense-reversing [7] which uses spin-wait loops with

the PAUSE instruction (spin-loops), a similar version which

uses the HALT instruction along with the accompanied mecha-

nisms to send IPIs (spin-loops-halt), and the native implemen-

tation offered by the NPTL library (pthreads). In these ver-

sions, the actions performed by the intermediate and the last

thread entering the barrier, are quite the same to those per-

formed by the waiting and worker thread, respectively, in the

execution scenario we examined in section 4.2.

At first, we evaluate all implementations on a simple execu-

tion scheme like this presented in Fig. 3a. Again, we consider

a heavyweight and a lightweight thread scheduled on different

contexts of a hyper-threaded processor. The heavyweight per-

forms the same amount of floating-point work as in the previ-

ous scenario, while the lightweight does nothing. The threads

are synchronized at the end with a barrier. The helper enters

immediately the barrier, waiting to be notified by the worker

when it finishes its computations and enters its barrier. For

each implementation, we measure the time required for the

worker to complete its computations (Twork), the time between

the arrival of the worker on the barrier and the departure of the

helper from it (Twakeup), and the time that the worker spends

in its barrier (Tcall).
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Figure 3. Execution scenario (a) and pseudo-

benchmark (b) for the evaluation of synchro-
nization barriers.

Barrier

implementation

Work time

(in seconds)

Wakeup latency

(in cycles)

Call latency

(in cycles)

spin-loops 4.3897 (±0.3461) 1236 (±340) 1173 (±338)

spin-loops-halt 3.5720 (±0.2624) 49953 (±11502) 51329 (±11879)

pthreads 3.5917 (±0.2345) 45035 (±3608) 18968 (±1343)

mwmon 3.5266 (±0.2549) 11319 (±1770) 5470 (±644)

Table 2. Performance of various barrier imple-

mentations for the scenario of Fig. 3a.

Table 2 presents the results from the evaluation of the vari-

ous barrier versions. Again, mwmon offers the best combina-

tion of low resource consumption, high responsiveness and low

call overhead. With respect to spin-loops, the waiting thread in

mwmon introduces 24% less interference to the main thread.

Compared to pthreads, which is the best option among the

three most resource-friendly versions, it has almost 4 times

lower wakeup latency and 3.46 times reduced call overhead.

As a next step, we evaluate barriers efficiency in fine-

grained synchronization of threads with varying workload

asymmetry. For this purpose, we have constructed a pseudo-

benchmark, again with two threads executing on different

hyper-threads of the same processor (see Fig. 3b). The unit

of work in this case is considered a 10 × 10 floating-point ma-

trix multiplication. Within a loop, the first thread (“heavy”)
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executes always the maximum amount of work, which is 10

units of work. The second thread (“light”), executes a smaller

amount of work within a same loop, which ranges between 0

and 10 units of work. Both loops iterate for 106 times, and be-

tween successive iterations threads are synchronized with bar-

riers. For all different degrees of light thread’s workload, we

measure the overall completion time of the benchmark using

various barrier implementations. To a large extent, this time

reflects the throughput of each barrier version, considering the

relatively short work executed in each loop iteration. From this

evaluation process we have omitted the spin-loops-halt imple-

mentation, since it yielded extremely large completion times

for this number of loop iterations, probably due to its large call

and wakeup overhead.

Results are presented in Fig. 4. For all levels of threads

asymmetry, themwmon implementation outperformed all other

versions by a considerable factor. On average, it yielded

12% better throughput compared to pthreads, and 26% bet-

ter throughput compared to spin-loops. As expected, in the

case of complete asymmetry (light thread workload=0), mw-

mon enjoys best speedups (1.22 with respect to pthreads and

1.62 with respect to spin-loops), since this case involves the

largest wait periods in the light thread’s execution, which can

best advocate the mwmon’s ability to conserve execution re-

sources efficiently. As threads profiles converge to absolute

symmetry (light thread workload=10), the resource-conserving

characteristics of each implementation become less important,

and what matters more is the call overhead and the wakeup

latency. Again, mwmon performs slightly better compared to

spin-loops (by a factor of 1.02), and quite better compared to

pthreads (by a factor of 1.09), due to the larger performance

gap of pthreads with respect to call overhead and wakeup la-

tency (see Table 2).
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Figure 4. Throughput of various barrier imple-
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metry (see Fig. 3b).

4.4 Evaluating barriers performance for
speculative precomputation

The last step in our evaluation process involves testing the

various barrier implementations for applying Speculative Pre-

computation (SPR) on a series of real-world applications. SPR

is a technique that targets at utilizing the multiple contexts of

a processor in order to accelerate a sequential application. In

SPR, the execution of an application is facilitated by additional

helper threads, which speculatively prefetch data that are going

to be used by the main computation thread in the near future,

thus hiding memory latency and reducing cache misses [2, 5].

In our work, we create at the beginning of the program a

single helper thread, that persistently occupies a specific hard-

ware context throughout execution. The worker executes on

the peer context in the same package. The helper runs ahead

and prefetches data that are going to be used by the worker in

its near future. Whenever it has prefetched a certain amount

of data, it is throttled, so that it is prevented from running too

far ahead and polluting the cache. This synchronization be-

tween threads can be implemented with barriers, following an

execution scheme like this presented in Fig. 2a. Further elab-

oration on issues such as generating code for the prefetcher or

selecting proper points to insert barriers, is out of our scope.

The reader is referred to [1] for a thorough discussion on these

issues. What is of main interest, is the barrier implementa-

tion itself, because operational characteristics such as call and

wakeup latency or resource consumption, determine key issues

for the efficiency of SPR, such as the miss coverage ability of

the prefetcher and extra overhead posed to the worker.

We used four benchmarks to evaluate SPR performance

using different barrier implementations: LU decomposition

(2048 × 2048, 10 × 10 blocks), transitive closure computa-

tion of a directed graph in dense representation (1600 vertices,

25000 edges, 16 × 16 blocks), the BT benchmark from NAS

Benchmark suite v. 2.3 (Class A), and a sparse matrix-vector

multiplication kernel (9648 × 77137, 260785 non-zeroes).

Fig. 5a presents the attained speedups of SPR using the

spin-loops, pthreads and mwmon barrier implementations.

Fig. 5b shows the numbers of L2 misses of the worker thread

normalized with respect to serial execution, which is a direct

indication of the miss coverage ability of each SPR version.

The counts were gathered using performance counters. Fur-

thermore, we measured for each application the fraction of cy-

cles during which the worker and prefetcher threads perform

useful computations or wait on synchronization barriers. This

cycle breakdown is presented in Fig. 5c. In this diagram, pe-

riods of work and wait are denoted as work and synch, respec-

tively. We expect that best SPR performance can be achieved

under combined occurrence of good miss coverage, uninter-

rupted work of the worker (minimal time spent in barriers),

and short workload of the prefetcher, which introduces the least

possible contention for shared resources, and entails long idle

periods where the benefit from resource-friendly barriers can

be maximized. Of course, the inherent potential of an applica-

tion to benefit from perfect cache locality plays always a sig-

nificant role.

At a first glance, SPR with mwmon barriers outperformed

all other versions and boosted application performance offer-

ing speedups between 1.07 (LU) and 1.35 (TC). Its average

speedup across all applications was 1.17. On average, mwmon
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Figure 5. Experimental results for SPR with different barrier implementations.

yielded 15% better execution times compared to spin-loops,

and 3.6% compared to pthreads. TC benefits the most from

SPR, probably because it enjoys great L2 miss reductions, hav-

ing originally bad cache locality. Likewise, despite its initial

bad locality, BT gets limited performance gains from SPR,

possibly due to insufficient miss coverage. SV and LU are

two benchmarks where SPR with mwmon adds notable per-

formance boost compared to the rest versions. LU, due to its

already good locality, seems to be more sensitive to the inter-

ference introduced by the prefetcher than the L2 miss reduction

achieved, and mwmon seems to be the option that best satisfies

this requirement. This assertion is also corroborated by the

fact that spin-loops implementation affects performance of LU

negatively. In SV, on the other hand, not only is the execu-

tion of the worker significantly interfered due to the relatively

large workload of the prefetcher, but the worker is also de-

layed on synchronization events for a non-trivial portion of its

execution time. Nevertheless, the prominent reduction of L2

misses, along with any resource-conserving offerings by mw-

mon, make mwmon the best choice in this case, as well.

5 Conclusions and Future Work

In this paper we explored the possibility of using the MON-

ITOR/MWAIT instructions for synchronization of applica-

tion threads with asymmetric workloads, executing on hyper-

threaded processors. We presented a framework through which

one can use these privileged instructions efficiently, and based

on this infrastructure we built basic condition-wait and notifi-

cation primitives, as well as synchronization barriers. Com-

pared to other spin-loops-based versions and Pthreads, our im-

plementations proved to be quite efficient for the application

model we consider, making the best compromise between low

resource waste and low call and wakeup latency. Noteworthy

performance gains were achieved when we tested our barri-

ers for fine-grained synchronization of threads and speculative

precomputation.

As a future work, we intend to extend our framework in

order to support multiple MONITOR/MWAIT-based synchro-

nization variables within the same application, and to support

synchronization in multi-SMT systems. Additionally, we in-

tend to evaluate our primitives on parallel programs with re-

quirements for fine-grained synchronization, and on other ap-

plication models that reflect our considered execution scheme,

such as MPI programs or I/O bound multithreaded applica-

tions. We argue that, with the advent of hybrid architectures

that encompass multitude of hardware contexts within a single

chip, architecture-aware hierarchical synchronization schemes

will play a significant role in parallel application performance

and thus seem to be worthwhile to investigate.
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