
Optimal Scheduling for UET-UCT Grids
Into Fixed Number of Processors

Theodore Andronikos, Nectarios Koziris,
George Papakonstantinou and Panayiotis Tsanakas

National Technical University of Athens
Dept. of Electrical and Computer Engineering

Computer Science Division
Zografou Campus, Zografou 15773, Greece

e-mail: {tedandr, nkoziris, papakon}@cslab.ece.ntua.gr

Abstract
The n-dimensional grid is one of the most representative
patterns of data flow in parallel computation. Many
scientific algorithms, which require nearest neighbor
communication in a lattice space, are modeled by a task
graph with the properties of a simple or enhanced grid. In
this paper we consider an enhanced model of the n-
dimensional grid by adding extra diagonal edges and
allowing unequal boundaries for each dimension. First,
we calculate the optimal makespan for the generalized
UET-UCT (Unit Execution Time – Unit Communication
Time) grid topology and, then, we establish the minimum
number of processors required, to achieve the optimal
makespan. We present the optimal time schedule, using
unbounded and bounded number of processors, without
allowing task duplication. This paper proves that UET-
UCT scheduling of generalized n-dimensional grids into
fixed number of processors is low complexity tractable.

1 Introduction

Task scheduling is one of the most important and
difficult problems in parallel systems. Since the general
scheduling problem is known to be NP-complete (see
Ullman [15]), researchers have given attention to other
methods such as heuristics, approximation algorithms etc.
In their paper Papadimitriou and Yannakakis [13] proved
the intractability of the general scheduling problem of a
task graph with arbitrary communication and computation
times and proposed a clever heuristic with guaranteed
worst performance twice the optimum makespan. In
addition to this, Gerasoulis and Yang have proposed in
[10], [17] the Dominant Sequence Clustering, a low
complexity heuristic for general task graph scheduling,
which is based on the critical path of tasks. On the other

hand, by restricting the general scheduling problem to
instances with simple properties, we may come up with
tractable solutions. For example, Jung et al. in [9] have
presented a polynomial algorithm that finds the optimal
makespan when the communication cost is constant and
task duplication is allowed.

When both computation and communication times are
restricted to have unit time length, it is known that
scheduling general UET-UCT graphs with bounded
number of processors is NP-complete, as Rayward-Smith
proved in [14], or Picouleau in [13] by reduction from the
unbounded UET-UCT instance. Even the case of
unlimited processors, when no task duplication is
allowed, is in general polynomially intractable [13]. On
the other hand, using task duplication, Colin et Chretienne
in [8] have presented a polynomial optimal schedule for
arbitrary task graphs with UET and SCT (Small
Communication Times, thus including UCT). Since the
arbitrary task graph scheduling with UET-UCT and no
duplication with unlimited processors is NP-complete,
researchers have focused on special cases of DAGs. In [6]
Chretienne presented an algorithm linear in the cardinality
of the vertices of the graph, for optimal makespan on SCT
in-trees and out-trees (thus covering UCT). In addition to
this, there exist polynomial optimal solutions for Series-
Parallel digraphs, bipartite graphs and trees with UCT as
surveyed in [7].

This paper solves the problem of UET-UCT
scheduling for task graphs having the form of a grid, on
bounded number of processors, assuming no duplication.
Grids and particularly generalized grids are typical task
graphs, which model most of the signal processing
algorithms and linear algebra methods such as matrix
multiplication, LU decomposition etc. Although the
general UET-UCT task graph scheduling problem into
fixed number of processors is NP-complete, we restrict
ourselves to grids which, as we prove, have low



complexity tractable schedules. We extend the simple grid
model of [4] by considering generalized n-dimensional
grids. In [1], [2] we have proved that the problem of time
and space scheduling for generalized grids is has a
polynomial time closed formula solution, when
unbounded number of processors are available. We have
calculated theoptimal makespanfor UET-UCT grids and
optimal number of processors, i.e., the minimum number
of processors required to achieve the optimal makespan.
In this paper we extend the scheduling strategy presented
in [1],[2] by considering bounded number of processors.
We present an optimal time and space scheduling policy
for UET-UCT grids. Our schedule partitions the vertices
of the grid into disjoint sets that lie on a family of parallel
hyperplanes. Each hyperplane contains vertices, which are
executed on different processors at the same time if
unlimited processors are available. Since the number of
available processors is less than the cardinality of vertices
in most of the hyperplanes (“large hyperplanes”), we use
a folding strategy for space scheduling. If m processors
are available, we use shifts of m vertices for each
execution step. Our method is based on the fact that for
every “large” hyperplane, there are m vertices available
for execution, which are ancestors of m already executed
points of a previous hyperplane.

The paper is organized as follows: In Section 2 we
give the notation and some definitions and in Section 3
we present the optimal UET-UCT makespan for n-
dimensional generalized grids and the minimum number
of processors adequate for the optimal makespan. In
Section 4 we establish a tight lower bound for optimal
makespan for UET-UCT grids when the number of
processors is fixed and a polynomial scheduling strategy
that realizes this lower bound, and, thus, is optimal.
Finally, in Section 5 we present an illustrative example of
a 2-D and a 3-D grid optimally scheduled on unbounded
and fixed number of processors.

2 Preliminary Concepts

2.1. Notation

In the rest of the paper the following notation is used:
ÿ N is the set of non negative integers (naturals).
ÿ n is the dimension of the grid.
ÿ GU is the n-dimensional grid with terminal point

U=(u1, …, un).

2.2. Basic Concepts

The directed edges of a grid representprecedence
constraints that have to be satisfied in order to correctly
complete the tasks represented by the vertices. The formal
definition of the schedule must reflect our intuition that a
vertex j correctly begins its execution at instant k iffall

the verticesi � IN(j ) have completed their execution and
communicated their results (if needed) toj by that
moment.
ÿ The initial segment of Nn with terminal point U =(u1,

…, un) � Nn, denoted NU, is the set {(k1, …, kn) � Nn |
0� ki � ui, 1� i � n}.

ÿ In case n=1, the initial segment {k� N | 0� k� u} is
denoted Nu.

ÿ Let ei be ÿ������������������
����
ÿ�� �ÿ�� �

--

, 1� i � n. The (n-

dimensional) grid vector set, denoted GVS, is the set
{ d=(d1, ..., dn) � Nn | d=ÿ1e1+ … +ÿnen, whereÿi � {0,

1} �
i 1

n

�
� ÿi � 0}.

Definition 2.1. The generalized n-dimensional grid
with terminal point U, denoted GU, is the DAG with

vertices the set NU and directed edges the set {(i, j ) � 2NU |

j=i+d, d� GVS}. ÿ
Definition 2.2. We impose alinear ordering among
the points of NU, which we calllexicographic ordering.
Let i=(m1, …, mn) and j=(k1, …, kn) be two points of NU.
We say thati is less thanj and we writei � j iff mr � kr for
some r, 1� r � n, and, if r� 1, mi=ki, 1� i � r-1. ÿÿÿÿ

In the rest of the paper we use the lexicographic
ordering of the vertices, i.e., when we writei � j , we mean
that i is lexicographically less thanj .
Definition 2.3. For every vertexj of a grid GU, we
define the following sets:
(1) IN(j ) = { i � NU | j=i+d, whered� GVS}, and
(2) OUT(j ) = { i � NU | i=j+d, whered� GVS}. ÿ
Definition 2.4. A schedulefor the grid GU, denoted
S(GU), is an ordered couple (TIME, PROC), where TIME
and PROC are thetime and processor schedules,
respectively, defined as follows:
(1) TIME is a function from NU onto Nk, for some
k� N, such that:

TIME(j )=t � the execution of taskj begins at
moment t, and
(2) PROC is a function from NU onto Nm, for some
m� N, such that:

PROC(j )=r � task j is assigned to processor r,
with the additional requirement
(3) � i � IN(j ) TIME(j )-

TIME(i) �
�
�
�

�� ÿ�����ÿ���������
ÿ������ÿ���������
ÿ�
ÿ�

ÿ�
�

, where:

p is the processing time andc the communication
delay. ÿ
Remark 2.1.
(1) In UET-UCT grids we assumep=1 andc=1.
(2) Condition (3) is necessary in order to ensure the

validity of the schedule, i.e., that the precedence
constraints are respected. �



Definition 2.5. Let TIME and PROC be functions
from NU onto Nk and Nm, respectively, for some k, mÿN.
� The makespan of the time schedule TIME, denoted

MTIME, is k+p, wherep is the processing time.
� The processor-spanof the processor schedule PROC,

denoted PPROC, is m+1. ÿ
Clearly, the makespan gives the completion time of the

last task and, hence, the time required for the completion
of the whole grid, and the processor-span gives the
number of processors required by the specific schedule.
Definition 2.6. We now give the following
definitions:

�� Assuming unbounded number of processors, a time
schedule is optimal, denoted TIMEOPT, iff its
makespan is minimal.

�� In this case a processor schedule is optimal, denoted
PROCOPT, iff it realizes TIMEOPT using the minimal
processor-span.

�� Assuming m processors, a time schedule is optimal,
denoted TIMEm-OPT, iff its makespan is minimal
among all time schedules that use m processors.

�� Assuming m processors, a processor schedule is
optimal, denoted PROCm-OPT, iff it realizes TIMEm-

OPT. ÿ
In [2] and [3] the following result was proved:

Fact 1. Let GU be an n-dimensional generalized
grid with terminal point U and let TIME be a time
schedule for GU. Then: MTIME = TIME(U)+p, wherep is
the processing time. �

3 Properties of UET-UCT Grids

In order to achieve the execution of a grid in optimal
time, we partition its vertices into parallel hyperplanes,
taking into account the presence of communication
delays. These hyperplanes contain the vertices that can be
executed in parallel; if two points belong to the same
hyperplane, they can be computed at the same moment
and if they belong to successive hyperplanes they can be
computed at successive moments.
Definition 3.1. Given the n-dimensional UET-UCT
grid GU, with U=(u1, …, un), we give the following
definitions:

�� The length of GU along the i-th dimension, 1� i � n,

denoted ÿ
ÿÿ , is 2(u1+ … +ui-1+ui+1+ … +un)+ui.

�� ÿ
�� = {(k 1, …, kn)ÿNU | 2(x1+ … +xi-1+xi+1+ …

+xn)+xi=k, kÿN}, 1 � i � n.

�� ÿ
���� = max{ ÿ

�� | 0� k� ÿ
ÿÿ }, 1 � i � n. ÿ

Geometrically, ÿ
�� consists of the common points of

the grid GU and the n-1 dimensional hyperplane 2(x1+ …
+xi-1+xi+1+ … +xn)+xi=k.

Every vertexj=(k1, …, kn) of the grid has amaximal
coordinate, i.e., a coordinate ki for which ki � kr, 1� r � n. In
[1] and [2] several important results for UET-UCT grids
were shown. We state these results here, without proof:
Fact 2. Let GU be an n-dimensional generalized
grid with terminal pointU and letj=(k1, …, kn) be a point
of NU with maximal coordinate ki. The earliest

computation time ofj is ÿ

�

ÿ�
�

� �� ��
�
� �

� .

This result demonstrates that in UET-UCT grids not all
the n dimensions of the grid are equivalent. If our aim is
to minimize the execution time of a vertexj , then we must
pay special attention to the “maximal coordinate” ofj , in
the sense that the same processor must execute all points
along this direction. This scheduling strategy has the
effect of eliminating the communication overhead along
this direction. Hence, in order to achieve the optimal
parallel time of a UET-UCT grid, we have to give
precedence to the maximal coordinate of the terminal
point.
Fact 3. Let GU be a UET-UCT grid with terminal
point U=(u1, …, un) and let TIMEOPT be an optimal time
schedule for GU. Then, we have MTIMEOPT

= 2(u1+ … +ui-

1+ui+1+ … +un)+ui+1 = ÿ
ÿÿ +1.

Fact 4. Let GU be a UET-UCT grid with terminal
point U=(u1, …, un). Then, the following hold:

� �
� �

�
�

�

�

�
�
�

�

�
���������

�

�
�
�

�
���

�
�
�

�

�

�
�
�

�

�

�

��
�

�
�
�

�
���

n

r

rri
k

n-

u...u
k

n

n

k
n

1

1

1

11)(1)(
21)(

1

1
2

, 0� k� ÿ
ÿÿ and:

�� � =

�
�
�

��
�

�

��
�

��
� �

��
�

��
�

��������������
�
�

���������������
�
ÿ

ÿ

�

�

, and

�� � = �� , 1� r � i � n.

Fact 5. Let GU be a UET-UCT grid with terminal
point U=(u1, …, un). Then, we have:

�� ÿ
�� � ÿ

�� � …� ÿ
� ��� � ÿ

� � ���� �� � …� ÿ
ÿ�
�
�

�
�
�

�
�

�� ÿ

,

where me = �
�

�
�
�

�
�

ÿ� ÿ , and

�� ÿ
�� � ÿ

�� � …� ÿ
� � �� �� � ÿ

� � ����� ��� � …� ÿ
ÿ�

�� �
�
��
�

�
�
�

� �
�

ÿ

,



where mo =

ÿ
ÿ
ÿ
ÿ

�

ÿ

�
�
�
�

�

�
ÿ
�

ÿ
�
�

� �

ÿ
ÿ
�ÿ� ÿ

.

Fact 6. Let GU be a UET-UCT grid with terminal
point U=(u1, …, un). Then, we have:

ÿ
���� = ÿ

ÿ�
ÿ
�

ÿ
�
�

�
�

�ÿ ÿ
.

Fact 7. Let GU be a UET-UCT grid with terminal
point U=(u1, …, un), let ui be a maximal coordinate ofU
and let PROCOPT be an optimal processor schedule for
GU. Then, we have:

PPROCOPT
= ÿ

���� = ÿ
ÿ�
ÿ
�

ÿ
�
�

�
�

�ÿ ÿ
.

Figure 3.1. An optimal schedule for GU2.
Example 3.1. In this example we examine the issues
involved in scheduling 2-dimensional grids using
unbounded number of processors. Given an arbitraryj
which is executed at time k, consider the set OUT(j ).
Under any optimal scheduling strategy,at most one
i � OUT(j ) will be executed at time k+1 and all others at
later time instants. Obviously, the issue here is the
selection of thei that will lead to the optimal makespan.
As we have pointed out the maximal coordinate of the
grid determines this selection.

Further, notice that in the UET-UCT case, due to the
communication delays, there is nounique family of
optimal hyperplanes for every grid. Instead, the family of
optimal hyperplanes depends on the maximal coordinate
of the terminal point. For GU2 (see Figure 3.1) the optimal

hyperplanes are x1+2x2=k, whereas for GU2� (see Figure

3.2) the optimal hyperplanes are 2x1+x2=k, 0� k� 10. ÿ

Figure 3.2. An optimal schedule for GU2� .

Example 3.2. The optimal schedule for the grid
GU3 is depicted in Figure 3.3 and Figure 3.4. We must
stress the fact that in order to achieve the optimal time
schedule for the terminal point, we are forced to execute a
specific set of pointsat a later time. In the case of GU3

these points are of the form k2e2+k3e3, where 0� k2� 2 and
0� k3� 1 (see Figure 3.3).

Table 1. The optimal time schedule for GU3.

P0 P1 P2 P3 P4 P5

0 (0,0,0)
1 (1,0,0)
2 (2,0,0) (0,0,1) (0,1,0)
3 (3,0,0) (1,0,1) (1,1,0)
4 (2,0,1) (2,1,0) (0,1,1) (0,2,0)
5 (3,0,1) (3,1,0) (1,1,1) (1,2,0)
6 (2,1,1) (2,2,0) (0,2,1)
7 (3,1,1) (3,2,0) (1,2,1)
8 (2,2,1)
9 (3,2,1)

Notice that the vertices with the same y and z
coordinate must be executed on the same processor,
which means that the optimal time schedule must execute

the vertices of �
�� at instant k, 0� k� 9 (see Figure 3.4).

Consequently, we have STIMEOPT
(U3)=9. The optimal time

schedule is given in Table 1. It is important to note that
this schedule is not optimal in terms of processors.ÿ



Figure 3.3. Execution Time for
ÿÿG .

Figure 3.4. An optimal scheduling of
ÿÿG .

4 UET-UCT Grids & Fixed Number of
Processors

4.1. Lower and Upper Bounds for the Optimal
Makespan

In this section we establish lower and upper bounds for
the optimal time schedule under the assumption that the
number of processors is fixed. In the rest of this section
we denote m the number of processors.

In the rest of the paper we assume that for the terminal
point U=(u1, …, un) of the n-dimensional UET-UCT grid
GU we have u1ÿu2ÿ … ÿun. We can do that without any
loss of generality because for every grid GU, with terminal
point U=(u1, …, un), there exists an isomorphic grid GU � in

normal form with terminal pointU � =(u1� , …, un� ), where
(u1� , …, un� ) is a permutation of (u1, …, un). This
assumption will greatly facilitate the statement of the
subsequent results of this paper, regarding the UET-UCT
case.
Lemma 4.1. Let GU be a UET-UCT grid with terminal

point U=(u1, …, un) such that u1ÿu2ÿ … ÿun. Let �� < …

< ÿ� < … <
�� �� �

� and �� < … < qj < 1�qj < … <
��

� �� ��
�

be the index points of �
�� and �

��� � , respectively,

0� k� �� ÿ , where j q= ÿ� +e1 and ÿ� +e1� NU. Then, the

following hold:

(1) q = ��
� �� �� ÿ p,

(2) ������������������ �

�

���

�
�

�
�

ÿ�
ÿ�
�

�

�

��� ��
��

����

�

�

ÿ� , and

(3) ���������
������

�

�
�

���
����

�

�

ÿ� �

ÿ

�
�

�

� . ÿ

The above Lemma says that any pointj of 1
1�� k either

depends on the pointi=j -e1 of 1
k� or it does not depend

on any point of 1
k� at all. Hence, the execution ofj can

begin at momentt+1, if the execution ofi=j -e1 can begin

at momentt, regardless of whether any point of 1
k� other

than i began its execution att (see Figure 4.1).

Figure 4.1. TheDependencyRelationof �
�� and �

� ��� .

4.2. The Scheduling Strategy

What we have shown so far suggests the following
optimal scheduling strategy:

Let �� < … < ��ÿ� < … <
�� �� �

� and �� < …

<
��

� �� ��
� be the index points of �

�� and �
��� � ,

respectively, 0� k� �� ÿ , and let
��

� �� ��
� = ri +e1. Suppose



that at moment t the lexicographically first p points of
ÿ
ÿÿ �ÿ < … < ÿ��ÿ are computed. We examine the

following cases:

� p-1� r, where
ÿÿ

ÿ �ÿ �ÿ

� = ÿ
����� �ÿ� and ÿ

����� ÿ��ÿ� is

undefined. ThenLemma 4.1 asserts that at moment

t+1 the first (((
ÿ
ÿ�ÿÿ -1)-r)+p)� p (obviously

r � ÿ
ÿ�ÿÿ ) points �� < … <

ÿ��ÿ�� ÿ
ÿ ����ÿ � ��ÿ

� of

ÿ
ÿ�ÿÿ are available for execution.

� p-1� r, where
ÿÿ

ÿ �ÿ �ÿ
� = ÿ

����� �ÿ� and ÿ
����� ÿ��ÿ� is

undefined. ThenLemma 4.1 asserts that at moment

t+1 all the points of ÿ
ÿ�ÿÿ are available for

execution.
The conclusion is that eitherat least p points are

available for execution, orall the points of ÿ
ÿ�ÿÿ are

available for execution at moment t+1.
Utilizing the aforementioned optimal scheduling

strategy, we derive the optimal makespan for any UET-
UCT grid, as stated in the following Theorem:

Theorem 4.1. Let GU be a UET-UCT grid with
terminal pointU=(u1, …, un) such that u1� u2� … � un, let
m be the number of processors and let TIMEm-OPT be an
optimal time schedule for GU. Then the following hold:

,12r
m

ÿ|
)(TIME

11
k

rL

rk
OPTm

11
U

1r �

�
�
�
�

�

�

�
�
�
�

�

�
ÿ

���

�
�
�
�

�

�

�
�
�
�

�

�

���
��
�

�

�

�
� �

m

|
r

k

rL

rk

U

U

,211M

11

TIME

11

OPTm

�
�
�
�

�

�

�
�
�
�

�

�
ÿ

����

�
�
�
�

�

�

�
�
�
�

�

�
ÿ

����
��
�

�

�

�
� m

|
rr

m

|
r

k

rL

rk
k

rL

rk

UU

where r is the least natural such thatÿ�ÿ � m. ÿ

5 Case Study

Consider the grids GU2 and GU3, of Examples 3.1and
3.2, with terminal pointsU2=(4, 3) and U3=(3, 2, 1),
respectively. The maximal coordinate of both terminal
points is the first. The grids GU2 and GU3 are partitioned

into the hyperplanes �
ÿÿ , whose cardinality is depicted in

Table 2 and Table 3, respectively. Incidentally, one can
also see that their optimal makespan is 10 and 9,
respectively, when unbounded number of processors is
available.

Table 2. The cardinality of 1
kÿ for GU2.

Hyperplane Cardinality
0 1
1 1
2 2
3 2
4 3
5 2
6 3
7 2
8 2
9 1

10 1

Table 3. The cardinality of 1
kÿ for GU3.

Hyperplane Cardinality
0 1
1 1
2 3
3 3
4 4
5 4
6 3
7 3
8 1
9 1

If we have only 2 processors available, then the
following Table 4 and Table 5 depict the optimal time
schedule for the grids GU2 and GU3, respectively, based on
the analysis of Section 4.

Table 4. The optimal UET-UCT schedule for GU2.

P0 P1

0 (0, 0)
1 (1, 0)
2 (2, 0) (0, 1)
3 (3, 0) (1, 1)
4 (4, 0) (2, 1)
5 (0, 2) (3, 1)
6 (1, 2) (4, 1)
7 (2, 2) (0, 3)
8 (3, 2) (1, 3)
9 (4, 2) (2, 3)

10 (3, 3)
11 (4, 3)

6 Conclusion

In this paper we have proved that UET-UCT
scheduling of task graphs having the form of n-



dimensional generalized grids is not only low complexity
tractable but it also has a general solution expressed with
a closed formula for both time and processors. We have
presented an optimal strategy for both time and processor
scheduling of these grids with unit communication delays,
having bounded number of processors. The proposed
scheduling strategy for these UET-UCT graphs is proved
to achieve the optimal makespan.

Table 5. The optimal UET-UCT schedule for GU3.

P0 P1

0 (0, 0, 0)
1 (1, 0, 0)
2 (2, 0, 0) (0, 1, 0)
3 (0, 0, 1) (1, 1, 0)
4 (1, 0, 1) (3, 0, 0)
5 (2, 0, 1) (2, 1, 0)
6 (0, 1, 1) (0, 2, 0)
7 (3, 0, 1) (3, 1, 0)
8 (1, 1, 1) (1, 2, 0)
9 (2, 1, 1) (2, 2, 0)

10 (0. 2, 1) (3, 2, 0)
11 (1, 2, 1) (3, 1, 1)
12 (2, 2, 1)
13 (3, 2, 1)

References

1. Andronikos, T., Koziris, N., Papakonstantinou, G. and
Tsanakas, P. Optimal Scheduling for UET-UCT
Generalized n-Dimensional Grid Task Graphs,
Proceedings of the 11th IEEE International Parallel
Processing Symposium (IPPS97),pp. 146-151,
Geneva, Switzerland, 1997.

2. Andronikos, T., Koziris, N., Papakonstantinou, G. and
Tsanakas, P. Optimal Scheduling for UET/UET-UCT
Generalized n-Dimensional Grid Task Graphs,
accepted, to appear in Journal of Parallel and
Distributed Computing, 1999.

3. Andronikos, T., Koziris, N., Papakonstantinou, G. and
Tsanakas, P. UET/UET-UCT Scheduling for Grids,
Technical Report CS-CSLAB-TR-7-96, Computing
Systems Laboratory, Jul. 1996.

4. Bampis, E., Delorme, C., and Konig, J.C. Optimal
Schedules for d-D Grid Graphs with Communication
Delays. Symposium on Theoretical Aspects of
Computer Science (STACS96). Grenoble France 1996.

5. Berman, G., and Fryer, K.D.Introduction to
Combinatorics. Academic Press, New York, 1972.

6. Chretienne, P. A Polynomial algorithm to Optimally
Schedule Tasks over a Virtual Distributed System
under Tree-like Precedence Constraints.Eur. J. Oper.
Res.43, pp. 225-230, 1989.

7. Chretienne, P. and Picouleau C. (Ed.) Scheduling with
Communication Delays: A Survey,in Scheduling
Theory and its Applicationspp 65-90. John Wiley &
Sons 1995.

8. Colin, J. Y., and Chretienne, P. CPM Scheduling with
Small Communication Delays and Task Duplication.
Oper. Res.39, pp. 680-684.

9. Jung, H., Kirousis, L., and Spirakis, P. Lower Bounds
and Efficient Algorithms for multiprocessor
Scheduling of DAGS with communication Delays.
Proceedings of 1st SPAA1989, pp. 254-264,and
Information and Computation 105, pp 94-104, 1993.

10. Gerasoulis, A., and Yang, T. On the Granularity and
Clustering of Directed Acyclic Task Graphs.IEEE
Trans. Parallel Distrib. Syst. 4, 6, pp. 686-701, 1993.

11. Koziris, N., Andronikos, T., Economakos, G.,
Papakonstantinou, G., and Tsanakas, P. Automatic
Hardware Synthesis of Nested Loops using UET Grids
and VHDL, Proceedings of the International
Conference on High Performance Computing and
Networking (HPCN97), Lecture Notes in Computer
Science, Springer-Verlag,pp. 888-897, Vienna,
Austria 1997.

12. Papadimitriou, C., and Yannakakis, M. Toward an
Architecture-Independent Analysis of Parallel
Algorithms. SIAM J. Comput. 19, pp. 322-328, 1990.
Ext. Abstract in STOC 1988.

13. Picouleau, C. Etude de Problems d’ Optimization dans
les Systemes Distribues. These, Universite Pierre et
Marie Curie, 1992.

14. Rayward-Smith, V.J. UET Scheduling with Unit
Interprocessor Communication Delays and Unlimited
Number of Processors.Discrete Applied Mathematics.
18, pp. 55-71, 1987.

15. Ullman, J. NP-Complete Scheduling problems.
Journal of Computer and Syst. Sciences. 10, pp. 384-
393, 1975.

16. Varvarigou, T., Roychowdhury, V., and Kailath, T.
Scheduling in and out Forests in the Presence of
Communication Delays. Proceedings of 7th
International Parallel Processing Symposium, pp.
222-229, 1993.

17. Yang, T. and Gerasoulis, A. DSC: Scheduling Parallel
Tasks on an Unbounded Number of Processors.IEEE
Trans. Parallel Distrib. Syst. 5, 9, pp. 951-967, 1994.


