
Evaluation of Dynamic Scheduling Methods in Simulations of Storm-time Ion
Acceleration

Ioannis Riakiotakis, Georgios Goumas, Nectarios Koziris
National Technical University of Athens

School of Electrical and Computer Engineering

Computing Systems Laboratory

{iriak, goumas, nkoziris}@cslab.ece.ntua.gr

Fiori-Anastasia Metallinou and Ioannis A. Daglis
National Observatory of Athens

Institute for Space Applications and Remote Sensing

{ametal, daglis}@space.noa.gr

Abstract

In this paper we investigate the applicability of classic
dynamic loop scheduling methods on a numerical simula-
tion code that calculates the trajectories of charged par-
ticles in the earth’s magnetosphere. The numerical ap-
plication under consideration investigates the influence of
substorm-induced electric fields that cause magnetospheric
disturbances, responsible for severe hazards in human ac-
tivities and technology infrastructures in the near-earth
space environment. The computational time to simulate the
motion of each particle is dependent on the inital conditions
applied and may greatly vary between different particles.
This fact leads to great load imbalances in parallel execu-
tion scenarios and thus to degraded overall performance.
For this reason we apply dynamic scheduling techniques
to load-balance the tasks in homogeneous, heterogeneous
and loaded distributed-memory parallel platforms and se-
lect the most appropriate among the available strategies.

1. Introduction

This work evaluates the use of dynamic scheduling meth-
ods in improving the performance of a numerical simulation
code for storm-time ion acceleration in the terrestrial mag-
netosphere. The scientific problem investigated is the influ-
ence of substorm-induced electric fields on the storm-time
ring current development. The ultimate goal is to clarify the

This work has been supported by the Greek Secretariat for Research &
Technology and the European Commission through the Operational Pro-
gramme ”Information Society”.

storm-substorm relationship and consequently contribute to
the understanding of Sun-Earth connection. Any sudden
change in the Earth’s magnetic field is defined as geomag-
netic activity. Such perturbations are caused by electric cur-
rents flowing in the Earth’s magnetosphere and ionosphere,
which are driven by the solar wind. The main types of
geomagnetic activity in the near-Earth space are geospace
magnetic storms and magnetospheric substorms. Magnetic
storms cause a reduction of the strength of the horizon-
tal component of the geomagnetic field, they are observed
globally at mid-latitudes and last for a few days. During a
magnetic storm, the large-scale magnetospheric convection
is responsible for the transport and acceleration of energetic
ions into the inner magnetosphere. During intense magnetic
storms, a succession of substorms tends to occur. Magne-
tospheric substorms are short intervals of intense magnetic
disturbance, lasting for a few hours. A specific sequence of
events, such as auroral arc brightening and auroral electrojet
development, occur in the magnetosphere and ionosphere
during a substorm. The storm-substorm relationship still
remains an open question in magnetospheric physics. Clar-
ification of this problem contributes to the understanding of
Sun-Earth connection. Our aim is to contribute to the above
problem by using a numerical simulation code for storm-
time ion acceleration in the terrestrial magnetosphere.

It has been observed that the geomagnetic field distur-
bances drive the Space Weather and are able to affect hu-
man activities and technology infrastructures in the near-
earth space environment, the ionosphere and on ground. Im-
portant impacts of Space Weather may be summarized as
follows: Spacecraft charging, penetration of charged par-
ticles to satellite electronics, astronaut health hazards, dis-

ruption of communications, radio black-outs, GPS signal
scintillation. Because of the flow of the Geomagnetically-
Induced-Currents (GICs) to the ground, there are reports on
damages on pipelines, increased heating and burning-out of
transformers, electric power problems and electrical black-
outs.

Using the particle code of D. Delcourt [6] we are able
to calculate trajectories of charged particles moving under
the scenario of a storm-time substorm occurrence. We sim-
ulate the reconfiguration of the geomagnetic field during a
substorm, while storm-time conditions are set to the mag-
netosphere. We choose the ion species we want to trace and
after setting its initial conditions (energy, coordinates) we
follow its transport and energization in the magnetosphere.
The exact trajectory of the particle depends on the initial
conditions and the time instant at which its motion starts
under a specific magnetic field configuration. Depending
on the above parameters, when we trace a large number of
ions their trajectories may vary dramatically. Some of them
may terminate their motion earlier than others, by reaching
the magnetopause, while others may drift around the Earth
in the inner magnetosphere and contribute to the ring cur-
rent population. As a result, when running the code for a
large number of particles we face the problem of different
calculation volume per particle.

To deal with the above problem we apply classic dy-
namic loop scheduling schemes in order to efficiently load
balance the computation tasks. Dynamic scheduling algo-
rithms [8] attempt to use runtime information of the sys-
tem in order to make informative decisions for balancing
the workload. This makes them applicable to a large spec-
trum of applications. In [7] different dynamic load bal-
ancing algorithms with different complexities were com-
pared. An important class of dynamic scheduling algo-
rithms is the self-scheduling class: Chunk Self-Scheduling
(CSS) [12], Guided Self-Scheduling (GSS) [14], Trape-
zoid Self-Scheduling (TSS) [18], Factoring Self-Scheduling
(FSS) [15]. These algorithms were devised for schedul-
ing parallel tasks, i.e. loops without dependencies, exe-
cuted on homogenous systems. Self-scheduling algorithms
divide the total number of tasks into chunks, which are
then assigned dynamically to the processing nodes. Also
some variations of the above algorithms were presented that
improve their performance when applied to heterogeneous
systems like Weighted Factoring (WF) and [9] and Dis-
tributed trapezoid-scheduling (DTSS) [3],or that use run-
time statistics to adapted to highly irregular workloads like
adaprive factoring (AF) [2] and adapted weighted factoring
(AWF) [10].

We experimentally evaluate the efficiency of the above
scheduling schemes for various particle numbers on a
medium-scale distributed-memory machine. We take into
consideration the scenarios of homogeneous, heterogeneous

and loaded computing nodes. Our experimental results
show that dynamic scheduling techniques can significantly
improve performance especially in the cases when cpu or
system heterogeneity is added to the application’s imbal-
anced nature.

The rest of the paper is organized as follows: Section 2
presents information concerning the simulated phenomena
and the relevant simulation code, Section 3 provides a brief
presentation of dynamic scheduling methods and Section 4
presents experimental results on the efficiency of the above
methods on the parallel execution of the aforementioned
numerical application. Finally, Section 5 summarizes our
work and discusses directions for future work.

2 A model for storm-time substorms

In this section we provide information concerning the
models used for storm-time substorm simulations and the
characteristics of the corresponding numerical code.

2.1 Physics of the problem

Figure 1 schematically describes the evolution of the
magnetosphere during a substorm. Magnetospheric sub-
storms are more localized phenomena since their effects
are observed at high latitudes. On the other hand mag-
netic storms are more global phenomena observed at mid-
latitudes also. In Figure 1 we have plotted two geomagnetic
indices SYM-H and AL versus time, which represent the
magnetic storm and substorm activity respectively. Geo-
magnetic indices measure components of the geomagnetic
field, as measured by the magnetometers (instruments lo-
cated on the ground). Figure 1 shows that while SYM-H in-
dex decreases (this indicates magnetic storm activity), sud-
den decreases of the AL index also occur. Decreases of AL
index represent substorm activity.

The two main drivers responsible for the energization
and transport of particles from the magnetotail to the near-
Earth region are the convective drift and the inductive drift
[13]. The convective drift is imposed by the large scale con-
vection electric field in the nightside magnetosphere. As the
solar wind flows towards the earth, the solar wind and the
earth’s magnetic field create a natural generator. The flow
of the magnetized solar wind with a velocity represents an
electric field, referred as convection electric field:

E = −vsw × B

This convection electric field cannot penetrate the magne-
tosphere, since the solar wind cannot penetrate the magne-
topause. But during periods that the Interplanetary Mag-
netic Field (IMF) has a southward component, the north-
ward oriented terrestrial field lines reconnect with the IMF

Figure 1. The evolution of SYM-H and AL geo-
magnetic indices during a period of magnetic
storm activity.

field lines at the dayside magnetopause. As a result, the field
lines and the plasma drift as a whole, setting on a large-scale
circulation inside the magnetosphere, known as convection
(see Figure 2). According to the Lorentz law, the equation
of motion of a particle of charge q and velocity v, under the
influence of an electric field E and a magnetic induction B,
is given by:

m
dv

dt
= q(E + v × B)

Figure 2. A pattern of the large-scale con-
vection process as spread across the entire
width of the magnetosphere.

The vertical component of the velocity, which is usually
referred as E-cross-B drift, equals to:

v⊥ =
E × B

B2

E × B is perpendicular to both the electric and magnetic
fields and it is the basic transport and acceleration process

for ions moving from the magnetotail plasma sheet to the
inner magnetosphere.

Figure 3. During substorms the reconfigura-
tion of the geomagnetic field, induces elec-
tric fields in the magnetotail, which are re-
sponsible for plasma injections to the inner
magnetosphere.

During magnetospheric substorms, the time variations in
the geomagnetic field, as the magnetotail collapses, give
rise to intense electric fields that drive the inductive drift.
When a particle experiences time-varying magnetic fields,
it is subjected to electrical forces, according to the Fara-
day’s law:

∂B
∂t

= −�× E

The substorm induced electric fields accelerate particles
and inject them to the inner magnetosphere where they be-
come trapped. They are localized to the midnight-dusk sec-
tor and play an important role in the storm-time ring current
formation [4] (see Figure 3).

Our study aims at quantifying the influence of substorm-
induced electric fields on the build-up of particle radiation
during geospace magnetic storms. In order to investigate the
relative influence of magnetospheric convection and sub-
storm injections on ring current development, we need to
examine temporal and spatial variations of ion energy den-
sities in the inner magnetosphere during storms both with
and without substorm occurrence. For this reason we need
to model a substorm event under storm-time conditions.
The geomagnetic field used is simulated through the Tsy-
ganenko model [17], which gives a description of the av-
erage magnetic field configuration for 6 different levels of
geomagnetic activity. It includes contributions from exter-
nal sources such as the ring current, the magnetotail cur-
rent system, the magnetopause currents and the large-scale
system of field-aligned currents. If B1 and B2 correspond
to initial and final configurations of the geomagnetic field,
according to the Tsyganenko model, the magnetic field at

position r and time t is given by:

B(r, t) = B1(r) + f(t)(B2(r) − B1(r))

where f(t) is a polynomial of degree 5, that smoothly varies
between 0 at t = 0 and 1 at t = τ , where τ is the time scale
of the magnetic transition [5]. The large-scale steady con-
vection electric field in the magnetosphere is calculated by
the Volland-Stern model [19, 16]. It has been arranged to fit
most general features of electric fields observed by polar or-
biting satellites. A basic free parameter of the Volland-Stern
model is the cross polar-cap potential drop (Φpc) which
characterizes the strength of the convection and as a result
the intensity of the magnetic storm activity. It is calculated
from the electric fields measured by polar-orbiting space-
craft on a pass over the high-latitude ionosphere. It typically
ranges from 20kV, during geomagnetically quite periods, to
150 kV, during highly disturbed conditions.

The electric field induced by a transition of the geomag-
netic field, from an initial level to a final one, more or less
disturbed, is derived by the vector potential technique of
Delcourt [6]. The 3D particle code of Delcourt computes
the guiding center (GC) equation in the near-Earth region
and the full equation of the particle motion (FP) at distances
larger than 3RE.

We model a storm-time substorm according to the fol-
lowing pattern:

1. We primarily set convection conditions in the magne-
tosphere by the cross-polar cap potential drop. pc is
set to the value of 40 kV and at some time before the
onset of the substorm it changes to the value of 80kV,
and remains on that level for about one hour.

2. During the growth phase of a magnetospheric sub-
storm the magnetospheric magnetic field is stretched
to a less dipolar configuration, forming an elongated
magnetotail (e.g. [1]). The growth phase of a substorm
can be simulated by the evolution of a given magnetic
field level-a, which is represented by a given value of
Kp geomagnetic index, to a more disturbed one, level-
b (a higher value of Kp). The time scale of the mag-
netic transition is of the order of 30 minutes, which is
regarded to be a typical value for a substorm growth
phase [11].

3. As the expansion phase of a substorm is characterized
by a collapse of the geomagnetic tail, this dipolariza-
tion can be modeled by an evolution of the magnetic
field level-b to the initial level-a disturbance. The time
scale of this second transition is in the order of a few
minutes.

4. The magnetic field remains at the ground level for the
next few hours. Under the above sequence of tran-

sitions the magnetic field is calculated by the Tsyga-
nenko model.

2.2 Numerical code sketch

The numerical code that simulates the motion of a single
particle in the magnetosphere for a specific time window of
K time steps performs the three following major operations:

1. Initialization
a. Set storm-time conditions to the magnetosphere (po-
lar cap potential drop)
b. Set field transitions (levels of geomagnetic activity,
duration of the field transitions)
c. Set the particles initial conditions (position, energy,
pitch angle, species of ions, time at which it starts its
trajectory during the evolution of the magnetic field).
d. Set observation window size to K and current time
step k = 0.

2. Calculation of particle position
a. Use the Tsyganenko model to calculate the mag-
netic field.
b. Use the Volland-Stern model to calculate the con-
vection electric field.
c. Use the vector potential technique of Delcourt to
calculate the induced electric field.
d. Use the Lorentz law to calculate the new position of
the particle.
e. k=k+1

3. End of motion control
a. If particle is still in motion, and k < K go to step 2.

Clearly step 3 in the above sketch clarifies the great dif-
ferences that may occur in the computation time of various
particles. There exist cases where a particle may end its mo-
tion after a couple of steps (e.g. by colliding with the earth’s
surface, or reaching the boundary of the magnetopause) or
cases where the particle may remain in motion during all
the observed time window and can reach up to several hun-
dreds of time steps. The trajectory of each particle depends
strongly on its initial conditions and the exact time at which
it starts its motion, during the evolution of the magnetic field
we need to simulate. In this code interactions between par-
ticles are not taken into account, so a particles’ trajectory
does not depend on other particles. In order to produce a
more representative and realistic view of the ring current, a
large number of particles, is required. The initial conditions
for the particles used are taken from a range of values that
describe the plasma population we are interested in examin-
ing. It is obvious that the more particles used for each sim-
ulation, the more computational time is needed. The inves-
tigation of transport and the mechanism of energization for

a wider range of initial conditions (such as energies, pitch
angles, and coordinates) is an important issue of our study,
which also depends strongly on the available computational
power.

3 Dynamic scheduling methods

We give below an overview of the most well-known self-
scheduling schemes (SS, CSS, TSS, FSS and GSS), em-
ployed to speedup the execution process of a storm-time
substorm model. Self-scheduling algorithms work by parti-
tioning iteration spaces into chunks, thus creating a pool of
tasks which are dynamically assigned to processing nodes
upon request. In our case, each iteration in this iteration
space is a new independent execution of the simulation
code, using different initial conditions.

The simplest self-scheduling algorithm, called pure Self-
Scheduling (SS for short) assigns just one iteration to each
worker per request. This algorithm achieves almost perfect
load balance. All workers are expected to finish at nearly
the same time, with maximum difference of one iteration
execution time. On the other hand, SS can suffer from ex-
cessive scheduling overheads (Tsched), since the allocation
of tasks to workers is done in M scheduling steps, where
M is the total number of tasks.

Chunk Self-Scheduling (CSS) [12] assigns constant size
chunks to each worker, i.e., Ci = constant and 1 ≤ Ci ≤
M
P , where P is the number of workers. The chunk size is
usually chosen by the user. If Ci = 1 then CSS is identical
to (pure) Self-Scheduling. On the other hand, if Ci = M

P
the CSS is identical to static scheduling. A large chunk size
reduces scheduling overhead, but at the same time increases
the chance of load imbalance. As a compromise between
load imbalance and scheduling overhead, other schemes
start with large chunks to reduce the scheduling overhead,
which are gradually reduced in size throughout the execu-
tion to improve load balancing. These schemes are known
as reducing chunk size algorithms.

In Guided Self-Scheduling (GSS) [14], each worker is
assigned a chunk given by the number of remaining itera-
tions divided by the number of workers P , i.e., Ci = Ri/P ,
where Ri is the number of remaining iterations. Accord-
ing to GSS, R0 is the total number of iterations, i.e. M ,
and Ci = �Ri/P �, where Ri+1 = Ri − Ci. Thus,
Ci = �(1 − 1

P)i · M
p � and the number of scheduling steps

is N � 1

ln� P
P−1 �

ln�M
P �. GSS allocates most of the work in

the first few scheduling steps and the amount of the remain-
ing work is not adequate to balance the workload, so that in
some cases the load balancing achieved by GSS is poor.

The Factoring Self-Scheduling (FSS) [15] scheme sched-
ules tasks in batches of P equal chunks. In each batch j, a
worker is assigned a chunk size given by a subset of the re-

maining iterations (usually half) divided by the number of
workers. The chunk size for batch j is Cj = � Rj

α×P � (thus

Ci = �(1
α)j+1 M

P �) and Rj+1 = Rj − (P ×Cj), where the
parameter α is computed (by a probability distribution) or
is sub-optimally chosen α = 2. The total number of steps is
approximately equal to N � P1.44ln�M

P � [20]. The weak-
ness of this scheme is the difficulty to determine the optimal
parameters. However, tests show improvement on previous
schemes due to fewer adaptations of the chunk-size.

The Trapezoid Self-Scheduling (TSS) [18] scheme lin-
early decreases the chunk size Ci. In TSS the first and
last chunk size pair (F, L) may be set by the program-
mer. In a conservative selection, the (F, L) pair is de-
termined as: F M

2×P and L = 1. This ensures that the
load of the first chunk is less than 1/P of the total load
(i.e., the total number of tasks) in most task workload dis-
tributions and reduces the chance of imbalance due to a
large first chunk. Still excessive synchronization may oc-
cur. One can improve this by choosing L > 1. The pro-
posed number of steps needed for the scheduling process is
N = 2×M

(F+L) . Consequently, the decrement between con-
secutive chunks is D = (F − L)/(N − 1), and the chunk
sizes are C1 = F, C2 = F −D, C3 = F − 2×D, TSS
improves on GSS by decreasing the chunk-size linearly, in
a less dramatic way, achieving in this way better load bal-
ancing.

All the aforementioned dynamic scheduling methods
provide flexibility concerning the tradeoff between load-
balancing and scheduling overheads. Depending on the na-
ture of a particular application (i.e. the minimum and maxi-
mum computation times of chunks, the distribution of loads
among chunks, the scheduling overhead times, etc.) and the
features of the underlying computational platform, a par-
ticular method may outperform the rest in terms of total
parallel execution time. The goal of this paper is to se-
lect the most proper of the above methods for the numer-
ical code that simulates the trajectories of charged particles
moving under storm-time substorm conditions. In the next
section we provide relevant experimental data on medium-
scale cluster platforms, homogeneous, heterogeneous and
loaded.

4 Experimental evaluation

In this section we evaluate the impact of dynamic
scheduling methods on the total parallel execution time of
the ion acceleration models. The ion acceleration model is
written in Fortran 90 and compiled with the ifort v. 8.1 com-
piler. The dynamic scheduling methods are implemented in
C++ with calls to the MPI library (MPICH v. 1.2.7) and
compiled with the icc v. 8.1 compiler. We performed three
sets of experiments. The first uses a homogeneous plat-
form which is a 16-node Linux cluster (kernel 2.6.23.1).

Each node includes two quad-core Xeon chips based on In-
tel’s Core 2 microarchitecture (E53352GHz). Two cores
per package share a 4MB L2 cache. The interconnection
network is Gigabit Ethernet. We experimented with 64 pro-
cesses running in the above cluster. Our second set of ex-
periments is run on a heterogeneous platform using 48 pro-
cesses from the above cluster and 16 processes from an
8-node Linux cluster with a 2-way SMP Intel Pentium 4
Xeon processor with 1MB L2 cache. The third set involved
64 processes from the first cluster artificially loaded with
stochastic loads. In all cases, we have run the experiments
10 times and the results presented in the following sections,
are the average of these runs.

4.1 Homogeneous platform

In the first series of experiments we run the application
with the dynamic algorithms SS, TSS, FSS, GSS, and we
compared their performance to that of a static algorithm.
The static algorithm calculates the chunk size by dividing
the number of tasks (the number of studied particles in our
case) by the number of the available processing nodes, and
assigns these chunks to the processing nodes in a single
step. For this experiment we used 64 processes from the
16 node, quad-core, homogenous cluster. We consider that
the processing capabilities of all processes are the same, i.e.
that all processes can process the same amount of data at the
same time, but the completion time for the computation of
each particle is variable. The computation times of a sam-
ple run of 6400 particles is given in Figure 4. We expect
that this variation will make the dynamic algorithms more
suitable than the static for the scheduling of this application.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 1000 2000 3000 4000 5000 6000

E
xe

cu
tio

n
tim

e
(s

ec
)

Particles

Figure 4. Distribution of execution times per
particle for 6400 particles.

As we can see from the results given in Figure 5, all
dynamic algorithms outperform the static algorithm. The
performance improvement ranges from about 10% to 20%.
We can see that the performance improvement drops as the

number of particles increases. This is explained by the fact
that as we can see from Figure 4, the completion time of the
particles is uniformly distributed. As the number of parti-
cles increases, the computation time of all chunks of par-
ticles assigned by the static algorithm approaches an aver-
age value, and so all processing nodes finish at roughly the
same time. This in not true when we have a smaller num-
ber of particles, so the performance gap between the static
and the dynamic schemes is broader. Moreover, we can see
that in all cases, the simple self-scheduling (SS) has better
or similar performance to that of the other self-scheduling
algorithms. As it is mentioned in Section 3, the SS algo-
rithm can achieve the best load balancing from all other
members of the self-scheduling class, with the penalty of
increased scheduling overhead. In our case the scheduling
overhead, which is in the order of miliseconds, is insignif-
icant with respect to the task completion time, which is in
the order of tens-hundreds seconds, so we expected that the
simple self-scheduling algorithm will outperform the other
dynamic schemes. That means that pure SS is more suit-
able for the combination of computation and scheduling-
overhead times in the platforms under consideration and
thus we will employ this algorithm for the dynamic schedul-
ing in the forthcoming experiments presented in the follow-
ing paragraphs.

static
ss
tss
fss
gss

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

6,4003,200640320

N
or

m
al

iz
ed

 to
ta

l p
ar

al
le

l e
xe

cu
tio

n
tim

es

Number of particles

Figure 5. Comparison of static and dynamic
scheduling schemes in the homogenenous
platform for different numbers of particles.

4.2 Heterogeneous platform

In this set of experiments we add system heterogeneity
on top of workload variability. In this case we do not deal
with just variable task completion times, but also with un-
even processing capabilities of the processing nodes. We
use again 64 processes, 48 from the homogeneous cluster
and 16 from the 2-way SMP cluster. We have run a small-
size problem consisting of 10 particles to quantify the dif-
ference on the processing capabilities of the two types of
processing nodes, which resulted to a normalized ratio of
1.9 : 1 , i.e the first type of processing nodes can perform

1.9 times more computations than the second type of pro-
cessing nodes at the same time. In this series we tested
the performance of the best dynamic algorithm of the pre-
vious set of experiment, i.e., simple SS, to that of static and
weighted-static (wstatic) algorithms. The weighted-static
algorithm is similar to the static algorithm, but it assigns
more particles to the faster processing nodes, in a ratio of
1.9 : 1. In Figure 6 we can see the normalized parallel exe-
cution times for each of these algorithms. The performance
gain of the SS compated to the static algorithm in the het-
erogeneous case ranges from 34% to 46%. The gap between
the static and the dynamic algorithm is broader than in the
homogeneous case and this is due to the increased load im-
balance cased by the difference in the processing capabili-
ties of the processing nodes. The weighted-static (wstatc)
algorithm that takes into consideration the computational
power of each cpu, as expected performs significantly better
than the static one, but the dynamic algorithm is still better,
in the range of 13% to 26%. That is because even if we bal-
ance the processing capabities of the processing nodes there
is still imbalance caused by the workload variability.

static
ss
wstatic

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

6,4003,200640320

N
or

m
al

iz
ed

 to
ta

l p
ar

al
le

l e
xe

cu
tio

n
tim

es

Number of particles

Figure 6. Comparison of static and dynamic
scheduling schemes in the heterogeneous
platform for different numbers of particles.

4.3 Homogeneous platform with loads

In the third set of experiments we use again the homoge-
neous system of the first experimental set but this time we
inject external loads to the system, i.e. we start a number
of processes on the processing nodes. We make the sim-
ple assumption which holds in practice, that the processing
capability of a processing node is inversely proportional to
the number of processes existing in its run-queue. So, we
run a load generator at each node that creates loads at in-
tervals and with lifetimes following a poisson distribution.
The mean arrival times and the lifetime of the loads is dif-
ferent for each node to simulate a completely unpredictable
environment, starting for 1 load coming every 10 seconds
with lifetime of 5 seconds, up to 10 loads coming every 30
seconds with lifetime of 20 seconds. We do not consider a

weighted-static algorithm this time since the system is ho-
mogeneous and we have no indication of the perceived pro-
cessing capability of the system, i.e,. we do not know how
much the performance of each node is deteriorated under
the influence of the external load. The results of this set of
experiments are given in Figure 7. We observe that the dy-
namic algorithm is always better than the static algorithm,
and the performance difference is no-less than 40%, with
maximum value of 50%. This is the case where we can
observe the greatest difference between the static and the
dynamic algorithm, and this is explained by the fact that in
this case the existence of the external loads creates the most
unpredictable and dynamic environment, with the greatest
probability of load imbalance.

static
dynamic

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

6,4003,200640320

N
or

m
al

iz
ed

 to
ta

l p
ar

al
le

l e
xe

cu
tio

n
tim

es

Number of particles

Figure 7. Comparison of static and dynamic
scheduling schemes in the homogenenous
platform with loads for different numbers of
particles.

5 Conclusions – Future work

In this paper we investigated the performance impact of
dynamic scheduling strategies on a numerical code that sim-
ulates the trajectories of charged ion particles moving in the
magnetosphere under the scenario of storm-time substorm
occurence. Such an application is important to predict se-
vere Space Weather phenomena that may create important
impacts such as spacecraft charging, astronaut health haz-
ards, radio black-outs etc. In order to effectively model ge-
omagnetic activity phenomena we simulate the motion of
a large number of particles with different initial conditions
(energy, coordinates, etc). This variety in conditions may
lead to signicant variations in the simulation/computation
time of different particles, causing load imbalances and re-
duces performance under parallel execution scenarios.

To deal with the above problems we test static and var-
ious dynamic (self) scheduling schemes such as SS, TSS,
FSS and GSS that provide different tradeoffs between the
load balance achieved and the scheduling overhead. The
nature of the computations in our numerical code involves
large computational times (in the order of magnitude of 100

seconds per task/particle) rather uniformly distributed since
the initial values are set randomly per particle. Neverthe-
less, dynamic scheduling is meaningful even in the case of
homogeneous computing nodes and numerous tasks, pro-
viding a performance improvement of 10% in 64-process
execution for 100 tasks per process. In this homogeneous
case, if the number of particles assigned to each process is
smaller then this performance improvement can reach up to
20% for 5 particles per process. The best performance in
this case is attained by the simplest self-scheduling scheme
(pure Self Scheduling – SS) since, as expected, the com-
bination of execution times and scheduling times for this
code allows for scheduling synchronization per task which
achieves the best possible load balance.

The positive impact of dynamic scheduling is even more
evident when additional imbalance or heterogeneity factors
come into play. In a heterogeneous computing platform
the benefit of dynamic scheduling over the weighted static
case reaches up to 26%. Finally, in an non-dedicated envi-
ronment loaded with stochastic loads, dynamic scheduling
techniques provided up to a 50% reduction in the total exe-
cution time of the algorithm.

For future work, we plan to compare the efficiency of the
dynamic scheduling methods in larger-scale clusters where
the scheduling overhead is expected to play a more impor-
tant role, thus possibly accentuating the use of an alternative
scheduling method that is more aware of scheduling over-
head penalties. The same will possibly hold after the opti-
mization of the sequential code which will reduce the exe-
cution times per particle thus posing more frequent schedul-
ing requests.

References

[1] D. N. Baker, T. I. Pulkkinen, V. Angelopoulos, W. Baumjo-
hann, and R. L. McPherron. Neutral line model of sub-
storms: Past results and present view. Journal of Geophysi-
cal Research, 101:12975–13010, 1996.

[2] I. Banicescu and Z. Liu. Adaptive factoring: A dynamic
scheduling method tuned to the rate of weight changes.
Proc. of the High Performance Computing Symposium,
pages 122–129, 2000.

[3] A. T. Chronopoulos, M. Benche, D. Grosu, and R. Andonie.
A class of loop self-scheduling for heterogeneous clusters.
In CLUSTER ’01: Proceedings of the 3rd IEEE Interna-
tional Conference on Cluster Computing, page 282, Wash-
ington, DC, USA, 2001. IEEE Computer Society.

[4] I. A. Daglis and Y. Kamide. The role of substorms in storm-
time particle acceleration, in Disturbances in Geospace: The
Storm-Substorm Relationship. Geophysical Monograph Se-
ries, DOI 10.1029/142GM11, edited by A. S. Sharma, Y.
Kamide, and G. S. Lakhina, American Geophysical Union,
Washington, DC,, 142:119–129, 2003.

[5] D. Delcourt. Particle acceleration by inductive electric fields
in the inner magnetosphere. Journal of Atmospheric and
Solar-Terrestrial Physics, 64:551–559, 2002.

[6] D. Delcourt, J.-A. Sauvaud, and A. Pedersen. Dynamics
of single-particle orbits during substorm expansion phase.
Journal of Geophysical Research, 95:20853–20865, 1990.

[7] D. L. Eager, E. D. Lazowska, and J. Zahorjan. Adaptive load
sharing in homogeneous distributed systems. IEEE Trans.
Softw. Eng., 12(5):662–675, 1986.

[8] M. Harchol-Balter and A. B. Downey. Exploiting process
lifetime distributions for dynamic load balancing. ACM
Trans. Comput. Syst., 15(3):253–285, 1997.

[9] S. F. Hummel, J. Schmidt, R. N. Uma, and J. Wein. Load-
sharing in heterogeneous systems via weighted factoring. In
SPAA ’96: Proceedings of the eighth annual ACM sympo-
sium on Parallel algorithms and architectures, pages 318–
328, New York, NY, USA, 1996. ACM.

[10] V. V. I. Banicescu and J.Devaprasad. On the scalability
of dynamic scheduling scientific applications with adaptive
weighted factoring. Cluster Computing: The Journal of
Networks, Software Tools and Applications, 6(3):215–226,
2003.

[11] C. F. Kennel. Convection and Substorms - Paradigms of
magnetospheric phenomenology. Oxford University Press,
New York,, pages –, 1995.

[12] C. Kruskal and A. Weiss. Allocating independent sub-
tasks on parallel processors. IEEE Trans. on Software Eng,
11(10):1001–1016, 1985.

[13] M. Liemohn and J. Kozyra. Assessing the importance
of convective and inductive electric fields in forming the
stormtime ring current. R.L. Winglee (ed.), Sixth Interna-
tional Conference on Substorms, Univ. Washington, Seattle,
103:456–462, 2002.

[14] C. Polychronopoulos and D. Kuck. Guided self-scheduling:
A practical self-scheduling scheme for parallel supercom-
puters. IEEE Trans. on Computer., C-36(12):1425–1439,
1987.

[15] E. S. S.F. Hummel and L. Flynn. Factoring: A method for
scheduling parallel loops. Comm. of the ACM., 35(8):90–
101, 1992.

[16] D. Stern. The motion of a proton in the equatorial mag-
netosphere. Journal of Geophysical Research, 80:595–599,
1975.

[17] N. A. Tsyganenko. A magnetospheric magnetic field model
with a warped tail current sheet. Planetary and Space Sci-
ence, 37:5–20, 1989.

[18] T. Tzen and L. Ni. Trapezoid self-scheduling: A practical
scheduling scheme for parallel compilers. IEEE Trans. on
Paral. and Dist. Sys., 4(1):87–98, 1993.

[19] H. Volland. semi-empirical model of large-scale magne-
tospheric electric field. Journal of Geophysical Research,
78:171–180, 1973.

[20] K. Yue and D. Lilja. Parallel loop scheduling for high-
performance computers, 1993.

