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Abstract

This article focuses on the effect of both process topology and load balancing
on various programming models for SMP clusters and iterative algorithms. More
specifically, we consider nested loop algorithms with constant flow dependencies,
that can be parallelized on SMP clusters with the aid of the tiling transformation.
We investigate three parallel programming models, namely a popular message
passing monolithic parallel implementation, as well as two hybrid ones, that em-
ploy both message passing and multi-threading. We conclude that the selection
of an appropriate mapping topology for the mesh of processes has a significant
effect on the overall performance, and provide an algorithm for the specification
of such an efficient topology according to the iteration space and data dependen-
cies of the algorithm. We also propose static load balancing techniques for the
computation distribution between threads, that diminish the disadvantage of the
master thread assuming all inter-process communication due to limitations often
imposed by the message passing library. Both improvements are implemented as
compile-time optimizations and are further experimentally evaluated. An overall
comparison of the above parallel programming styles on SMP clusters based on
micro-kernel experimental evaluation is further provided, as well.
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1 Introduction

Distributed shared memory (DSM) architectures are becoming increasingly popular in
high performance computing. The top ranking systems on the TOP500 list are essen-
tially DSM platforms, proving that such systems can indeed sustain high performance,
close to the theoretical peak figures. SMP clusters, being a typical representative of
DSM platforms, are widely used in supercomputing centers, both for research and com-
mercial purposes. SMP clusters encompass the scalability of monolithic clusters, as well
as potential for shared memory multi-processing within each SMP node. For this type
of architecture, there is an active research interest in considering alternative parallel
programming models.

Traditionally, the pure message passing model has prevailed as the dominant par-
allelization technique for numerous high performance architectures, mainly due to its
success in achieving both high performance and scalability in working environments.
A significant amount of scientific algorithms have already been successfully parallelized
with the aid of message passing libraries, most notably MPI, PVM etc., often delivering
almost linear or even super-linear speedups. A large fraction of the code, that has been
submitted to message passing parallelization, concerns nested loops, that traverse a spe-
cific iteration space performing computations. The message passing parallelization of
such algorithms can be achieved with the aid of a coarse-grain task partitioning strategy,
such as the tiling transformation, and has proved to be quite beneficial in many cases.

However, for SMP clusters, hybrid programming models are being considered, as
well, although currently they are not as widespread as pure message passing ones. Gen-
erally, hybrid models retain message passing communication between different SMP
nodes, while resorting to shared memory multi-threaded processing within each SMP
node. Intuitively, hybrid models appear to map more closely to the architectural in-
frastructure of an SMP cluster than the monolithic paradigm, since they avoid using
message passing communication within an SMP node, which substantially is a shared
memory sub-system. Nevertheless, in practice, hybrid parallelization is a very open
subject, as the efficient use of an SMP cluster calls for appropriate scheduling methods
and load balancing techniques.

In this article we address two important issues regarding the parallelization of it-
erative algorithms onto SMP clusters, namely the specification of a suitable process
topology, as well as the efficient thread load balancing. We assume tiled loop N + 1-
dimensional algorithms, which are parallelized across the outermost N dimensions and
perform sequential execution along the innermost one in a pipeline fashion, interleaving
computation and communication phases. We prove that the selection of an appropriate
topology for the N -dimensional mesh of processes can significantly reduce the overall
completion time, and provide a heuristic method for the determination of such a topol-
ogy. Furthermore, we compare the coarse-grain hybrid model against the more popular
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fine-grain one, and emphasize on the need for an efficient load balancing strategy, in
order to overcome the limited multi-threading support provided by existing standard
message passing libraries, such as MPICH. Both improvements can be easily imple-
mented as compiler optimizations or library routines, and are experimentally verified to
deliver superior performance. Last, we compare all three models (pure message passing,
fine-grain hybrid and coarse-grain hybrid) against micro-kernel benchmarks, in order to
draw some more generic conclusions.

The rest of this article is organized as follows: Section 2 briefly discusses our tar-
get algorithmic model. Section 3 presents the various parallel programming models,
while Sections 4 and 5 describe the proposed optimizations regarding process topology
selection and thread load balancing, respectively. Section 6 displays results from the
experimental evaluation of the above optimizations, whereas Section 7 refers to related
scientific work. Finally, Section 8 summarizes the article and states some conclusions
which can be drawn from the experimental results.

2 Algorithmic Model

Our algorithmic model concerns iterative algorithms formulated as perfectly nested loops
with uniform data dependencies. Schematically, we consider tiled iterative algorithms
of the form depicted in Alg. 1. Alg. 1 is the equivalent tiled code form of a N + 1-

Algorithm 1: iterative algorithm model

foracross tile1 ← 1 to H(X1) do1

. . .2

foracross tileN ← 1 to H(XN) do3

for tileN+1 ← 1 to H(Z) do4

Receive(
−→
tile);5

Compute(A,
−→
tile);6

Send(
−→
tile);7

endfor8

endforacross9

. . .10

endforacross11

dimensional iterative algorithm with an iteration space of X1 × · · · × XN × Z, which
has been partitioned using a tiling transformation H. Z is considered the longest di-
mension of the iteration space, and should be brought to the innermost loop through
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permutation in order to simplify the generation of efficient parallel tiled code ( [20]). In
the above code, tiles are identified by an N + 1-dimensional vector (tile1, . . . , tileN+1).
foracross implies parallel execution, as opposed to sequential execution (for). Gen-
erally, tiled code is associated with a particular tile-to-processor distribution strategy,
that enforces explicit data distribution and implicit computation distribution, according
to the computer-owns rule. For homogeneous platforms and fully permutable iterative
algorithms, related scientific literature ( [4], [1]) has proved the optimality of the colum-
nwise allocation of tiles to processors, as long as sequential execution along the longest
dimension is assumed. Therefore, all parallel algorithms considered in this article imple-
ment computation distribution across the N outermost dimensions, while each processor
computes a sequence of tiles along the innermost N + 1-th dimension.

The computational part involves calculations on one or more matrices (A in Alg. 1)
and imposes uniform flow data dependencies, that result to a need for communication in
order for each process to exchange boundary data with its neighboring processes. In most
practical cases, the data dependencies of the algorithm are of several orders of magnitude
smaller compared to the iteration space dimensions. Consequently, only neighboring
processes need to communicate assuming reasonably coarse parallel granularities, taking
into account that distributed memory architectures are addressed. According to the
above, we only consider unitary process communication directions for our analysis, since
all other non-unitary process dependencies can be satisfied according to indirect message
passing techniques, such as the ones described in [19]. However, in order to preserve
the communication pattern of the application, we consider a weight factor di for each
process dependence direction i, implying that if iteration ~j = (j1, . . . , ji, . . . , jN+1) is
assigned to a process ~p, and iteration ~j′ = (j1, . . . , ji + di, . . . , jN+1) is assigned to a
different process ~p′, ~p 6= ~p′, then data calculated at ~j from process ~p need to be sent to
~p′, since they will be required for the computation of data at iteration ~j′. Algorithms
considered in this article impose data dependencies, that span the entire iteration space,
and therefore essentially interleave computation and communication phases.

Summarizing, following restrictions are assumed for our algorithmic model:

• fully permutable nested loops This restriction constitutes the most important sim-
plification adopted here.

• unitary inter-process dependencies This assumption holds for many real applica-
tions, whereas the non-unitary case can be similarly satisfied through indirect
message passing techniques.
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3 Parallel Programming Models for SMP Clusters

SMP clusters provide programming flexibility to the application developer, as they com-
bine both shared and distributed memory architecture. One can think of SMP clusters
as traditional monolithic MPP platforms, and transparently use a pure message passing
programming style across the entire cluster, both for intra-node and inter-node com-
munication. Alternatively, a parallel application could be designed in an hierarchical,
two-level manner, so that it distinguishes between inter- and intra-node communication.
In the first case, we refer to a pure message passing parallel programming paradigm,
while the second approach is often addressed as hybrid parallelization. In this Section,
we emphasize on the application of these two parallelization models on tiled iterative
algorithms. Naturally, other parallelization approaches also exist, such as using a paral-
lel programming language, like HPF or UPC, and relying on the compiler for efficiency,
or even assuming a single shared memory system image across the entire SMP cluster,
implemented with the aid of a Distributed Shared Virtual Memory (DSVM) software
( [16], [11]). Nevertheless, these techniques are not as popular as either the message pass-
ing approach, or even hybrid parallel programming, hence they will not be considered
in this article.

In the following, P1 × · · · × PN and T1 × · · · × TN denote the process and thread

topology, respectively. P =
N
∏

i=1

Pi is the total number of processes, while T =
N
∏

i=1

Ti

the total number of threads. Also, vector ~p = (p1, . . . , pN), 0 ≤ pi ≤ Pi − 1 identifies
a specific process, while ~t = (t1, . . . , tN), 0 ≤ ti ≤ Ti − 1 refers to a particular thread.
Throughout the text, we will use MPI and OpenMP notations in the proposed parallel
algorithms.

3.1 Pure Message-passing Model

The proposed pure message passing parallelization for the algorithms described above
is based on the tiling transformation. Tiling is a popular loop transformation and can
be applied in the context of implementing coarser granularity in parallel programs, or
even in order to exploit memory hierarchy by enforcing data locality. Tiling partitions
the original iteration space of an algorithm into atomic units of execution, called tiles.
Each process assumes the execution of a sequence of tiles, successive along the longest
dimension of the original iteration space. The complete methodology is described more
extensively in [9].

The message passing parallelization paradigm for tiled nested loops is schematically
depicted in Alg. 2. Each process is identified by N -dimensional vector ~p, while different

tiles correspond to different instances of N+1-dimensional vector
−→
tile. The N outermost

coordinates of a tile specify its owner process ~p, while the innermost coordinate tileN+1
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Algorithm 2: pure message passing model

Data: Algorithm (Compute), space
N
∏

i=1

XiZ, process ~p

for i← 1 to N do1

tilei = pi;2

endfor3

for tileN+1 ← 1 to ⌈Z
z
⌉ do4

foreach
−→
dir ∈ C~p do5

Pack(snd buf [
−→
dir],tileN+1 − 1,~p);6

MPI Isend(snd buf [
−→
dir],dest( ~p +

−→
dir) );7

MPI Irecv(recv buf [
−→
dir],src( ~p−−→dir) );8

endforeach9

Compute(
−→
tile);10

MPI Waitall ;11

foreach
−→
dir ∈ C~p do12

Unpack(recv buf [
−→
dir],tileN+1 + 1,~p);13

endforeach14

endfor15
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iterates over the set of tiles assigned to that process. z denotes the tile height along
the sequential execution dimension, and determines the granularity of the achieved par-
allelism: higher values of z (in respect to Z) imply less frequent communication and
coarser granularity, while lower values of z call for more frequent communication and
lead to finer granularity. The investigation of the effect of granularity on the overall
completion time of the algorithm and the selection of an appropriate tile height z are
beyond the scope of this article. Generally, we consider z to be a user-defined param-
eter, and perform measurements for various granularities, in order to experimentally
determine the value of z that delivers minimal execution time.

Furthermore, advanced pipelined scheduling is adopted as follows: In each time step,
a process ~p = (p1, . . . , pN) concurrently computes a tile (p1, . . . , pN , tileN+1), receives
data required for the computation of the next tile (p1, . . . , pN , tileN+1 + 1) and sends
data computed at the previous tile (p1, . . . , pN , tileN+1 − 1). C~p denotes the set of valid

communication directions of process ~p, that is, if
−→
dir ∈ C~p for a non-boundary process

identified by ~p, then ~p needs to send data to process ~p +
−→
dir and also receive data

from process ~p − −→dir. C~p is determined both by the data dependencies of the original
algorithm, as well as by the selected process topology of the parallel implementation.

For the true overlapping of computation and communication, as theoretically implied
by the above scheme by combining non-blocking message passing primitives with the
overlapping scheduling, the usage of advanced CPU offloading features is required, such
as zero-copy and DMA-driven communication. Unfortunately, experimental evaluation
over a standard TCP/IP based interconnection network, such as Ethernet, combined
with the ch p4 ADI-2 device of the MPICH implementation, restricts such advanced
non-blocking communication, but nevertheless the same limitations hold for our hybrid
models, and are thus not likely to affect the relative performance comparison. However,
this fact does complicate our theoretical analysis, since we will assume in general dis-
tinct, non-overlapped computation and communication phases, and thus to some extent
underestimate the efficiency of the message passing communication primitives.

3.2 Hybrid Models

The potential for hybrid parallelization is mainly limited by the multi-threading support
provided by the message passing library. From that perspective, there are mainly five
levels of multi-threading support addressed in related scientific literature:

1. single No multi-threading support.

2. masteronly Message passing routines may be called, but only outside of multi-
threaded parallel regions.
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3. funneled Message passing routines may be called even within the dynamic extent
of multi-threaded parallel regions, but only by the master thread. Other threads
may run application code at this time.

4. serialized All threads are allowed to call message passing routines, but only one
at a time.

5. multiple All threads are allowed to call message passing routines, without restric-
tions.

Each category is a superset of all previous ones. Currently, popular non-commercial
message passing libraries provide support up to the third level (funneled), while only
some proprietary libraries allow for full multi-threading support. Due to this fact,
most attempts for hybrid parallelization of applications, that have been proposed or
implemented, are mostly restricted to the first three thread support levels.

In this Subsection, we propose two hybrid implementations for iterative algorithms,
namely both fine- and coarse-grain hybrid parallelization. Both models implement the
advanced hyperplane scheduling presented in [2], that allows for minimal overall com-
pletion time.

3.2.1 Fine-grain Hybrid Model

The fine-grain hybrid programming paradigm, also referred to as masteronly in re-
lated literature, is the most popular hybrid programming approach, although it raises
a number of performance deficiencies. The popularity of the fine-grain model over the
coarse-grain one is mainly attributed to its programming simplicity: in most cases, it
is a straightforward incremental parallelization of pure message-passing code by apply-
ing block distribution work sharing constructs to computationally intensive code parts
(usually loops). Because of this fact, it does not require significant restructuring of
the existing message passing code, and is relatively simple to implement by submitting
the application to performance profiling and further parallelizing performance critical
parts with the aid of a multi-threading API. Also, fine-grain parallelization is the only
feasible hybrid approach for message passing libraries supporting only masteronly multi-
threading.

However, the fine-grain model imposes significant restrictions in terms of achieving
good performance. Most notably, its efficiency is directly associated with the frac-
tion of the code that is incrementally parallelized, according to Amdahl’s law. Since
message passing communication can be applied only outside of parallel regions, other
threads are essentially sleeping when such communication occurs, resulting to waste of
CPU and poor overall load balancing. Also, this paradigm suffers from the overhead
of re-initializing the thread structures every time a parallel region is encountered, since
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threads are continually spawned and terminated. This thread management overhead can
be substantial, especially in the case of a poor implementation of the multi-threading
library, and generally increases with the number of threads. Moreover, incremental loop
parallelization is a very restrictive multi-threading parallelization approach for many
real algorithms, where such loops either do not exist or cannot be directly enclosed
by parallel regions. After all, the success of the message passing paradigm with all its
programming complexity can be largely attributed to the programming potential of the
SPMD model, for which a fine-grain multi-threading parallelization approach provides
a poor substitute.

The proposed fine-grain hybrid implementation for iterative algorithms is depicted
in Alg. 3. The hyperplane scheduling is implemented as follows: Each group of tiles
is identified by a N + 1-dimensional vector −−−→group, where the N outermost coordinates
denote the owner process ~p, and the innermost one iterates over the distinct time steps.
G~p corresponds to the set of time steps of process ~p, and depends both on the process and
thread topology. For each instance of vector −−−→group, each thread determines a candidate

tile
−→
tile for execution, and further evaluates an if-clause to check whether that tile is

valid and should be computed at the current time step. A barrier directive ensures that
all threads are synchronized after the execution of the valid tiles, so that the next time
step can begin. The hyperplane scheduling is more extensively presented in [2].

All message passing communication is performed outside of the parallel region (lines 5-
9 and 20-23), while the multi-threading parallel computation occurs in lines 10-19. Note
that no explicit barrier is required for thread synchronization, as this effect is implic-
itly achieved by exiting the multi-threading parallel region. Note also that only the
code fraction in lines 10-19 fully exploits the underlying processing infrastructure, thus
effectively limiting the parallel efficiency of the algorithm.

3.2.2 Coarse-grain Hybrid Model

According to the coarse-grain model, threads are only spawned once and their ids are
used to determine their flow of execution in the SPMD-like code. Inter-node message
passing communication occurs within the extent of the multi-threaded parallel region,
but is completely assumed by the master thread, as dictated by the funneled thread
support level. Intra-node synchronization between threads of the same SMP node is
achieved with the aid of a barrier directive of the multi-threading API.

The coarse-grain model compensates the relatively higher programming complexity
with potential for superior performance. The additional promising feature of this ap-
proach, as opposed to the fine-grain alternative, is the overlapping of multi-threaded
computation with message passing communication. However, due to the restriction
that only the master thread is allowed to perform message passing, a naive straightfor-
ward implementation of the coarse-grain model suffers from load imbalance between the
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Algorithm 3: fine-grain hybrid model

Data: Algorithm (Compute), space
N
∏

i=1

XiZ, process ~p, thread ~t

for i← 1 to N do1

groupi = pi;2

endfor3

foreach groupN+1 ∈ G~p do4

foreach
−→
dir ∈ C~p do5

Pack(snd buf [
−→
dir],groupN+1 − 1,~p);6

MPI Isend(snd buf [
−→
dir],dest( ~p +

−→
dir) );7

MPI Irecv(recv buf [
−→
dir],src( ~p−−→dir) );8

endforeach9

#pragma omp parallel10

begin11

for i← 1 to N do12

tilei = piTi + ti;13

endfor14

tileN+1 = groupN+1 -
∑N

i=1 tilei;15

if 1 ≤ tileN+1 ≤ ⌈Z
z
⌉ then16

Compute(
−→
tile);17

endif18

end19

MPI Waitall ;20

foreach
−→
dir ∈ C~p do21

Unpack(recv buf [
−→
dir],groupN+1 + 1,~p);22

endforeach23

endforeach24
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threads, if equal portions of the computational load are assigned to all threads. There-
fore, additional load balancing must be applied, so that the master thread will assume
a relatively smaller computational load compared to the other threads, thus equalizing
the per tile execution times of all threads. Moreover, the coarse-grain model avoids
the overhead of re-initializing thread structures, since threads are spawned only once.
Additionally, the coarse-grain hybrid approach can potentially implement more generic
parallelization schemes, as opposed to its limiting fine-grain counterpart.

The pseudo-code for the coarse-grain parallelization of the fully permutable iterative
algorithms is depicted in Alg. 4. Note that the inter-node communication (lines 11-
17 and 24-29) is conducted by the master thread, per communication direction and
per owner thread, incurring additional complexity compared to both the pure message
passing and the fine-grain model. Also, note the bal parameter in the computation, that
optionally implements load balancing between threads, as will be described in Section 5.
Finally, note that the coarse-grain model requires explicit barrier synchronization, which
is however expected to incur a smaller overhead compared to the re-initialization of the
thread structures of the fine-grain model.

4 Process Topology

For all parallel programming models, the selection of an appropriate process topology
is critical in order to achieve good performance. Usually, given P processes for the
parallelization of an N + 1-dimensional iterative algorithm according to the pipelined
columnwise allocation, a N -dimensional mesh P1×· · ·×PN is selected, that constitutes
a feasible solution to the following optimization problem:

Pi→ N
√

P

P =
N
∏

i=1

Pi

Pi ∈ N















The advantage of such a process topology is minimizing the latency of the parallel
program, or equivalently ensuring that the most distant process will start executing
its work share at the earliest possible time step. Although this is the most common
approach for the selection of the process topology, is has a significant drawback for the
type of iterative algorithms we study: it fails to adjust to either the iteration space or
the data dependencies of the algorithm. However, by doing so, it is possible that it
imposes higher communication needs compared to the ones that would be required, if a
more appropriate topology was selected.

For instance, assuming that 16 processes are available for the parallel implementation
of a 3D algorithm, the standard approach would be to consider a 4× 4 topology, since
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Algorithm 4: coarse-grain hybrid model

Data: Algorithm (Compute), space
N
∏

i=1

XiZ, process ~p, thread ~t

#pragma omp parallel1

begin2

for i← 1 to N do3

groupi = pi;4

tilei = piTi + ti;5

endfor6

foreach groupN+1 ∈ G~p do7

tileN+1 = groupN+1 -
∑N

i=1 tilei;8

#pragma omp master9

begin10

foreach
−→
dir ∈ C~p do11

for th← 1 to M do12

Pack(snd buf [ ~dir],groupN+1 − 1,~p,th);13

endfor14

MPI Isend(snd buf [
−→
dir],dest( ~p +

−→
dir) );15

MPI Irecv(recv buf [
−→
dir],src( ~p−−→dir) );16

endforeach17

end18

if 1 ≤ tileN+1 ≤ ⌈Z
z
⌉ then19

Compute(
−→
tile,bal( ~p,~t) );20

endif21

#pragma omp master22

begin23

MPI Waitall ;24

foreach
−→
dir ∈ C~p do25

for th← 1 to M do26

Unpack(recv buf [
−→
dir],groupN+1 + 1,~p,th);27

endfor28

endforeach29

end30

#pragma omp barrier31

endforeach32

end33
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3D algorithm
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Figure 2: Selection of optimal process topology (P1, P2) for 3D algorithm according to
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it allows the most distant process to begin execution at the 7th time step. However,
given an iteration space X1×X2×Z with X1 = 4X2 and data dependencies (d, 0)T and
(0, d)T (the N + 1-th dimension is omitted in our dependence analysis, since it incurs
no communication according to our scheduling scheme), a topology of 8 × 2 would be
more appropriate for a distributed memory platform, as it reduces the communication
volume about 27% (see Fig. 1). Note though that the latter topology does not allow the
most distant process to begin execution until the 9th time step, therefore the parallel
algorithm requires two additional execution steps under the 8×2 topology. Nevertheless,
since each process will have to execute a sufficient number of tiles in order to ensure
a satisfactory degree of pipelining, this overhead is expected to be negligible compared
to the communication benefits attained at each execution step, if the 8× 2 topology is
selected.

Motivated by this observation, we developed a heuristic for the specification of an
appropriate process topology, given an iterative algorithm with specific iteration space
and data dependencies. The methodology is based on the following lemma:

Lemma 1. Let X1×· · ·×XN×Z be the iteration space of an N +1-dimensional iterative
algorithm, that imposes data dependencies [d1, . . . , 0]T , . . . , [0, . . . , dN+1]

T . Let P be the
number of processes available for the parallel execution of the algorithm. If there exist
Pi ∈ N, such that

P =
N
∏

i=1

Pi (1)

and
diPi

Xi

=
djPj

Xj

, 1 ≤ i, j ≤ N (2)

then process topology P1× · · ·×PN minimizes inter-process communication for the tiled
algorithm on P processes. Also, (2) is equivalent to

Pj =
Xj

dj

N

√

√

√

√

√

√

√

P
N
∏

i=1

di

N
∏

i=1

Xi

, 1 ≤ j ≤ N (3)

Note that (3) does not always define a valid topology. In fact, this is the case when
there is at least one j with 1 ≤ j ≤ N , such that Pj /∈ N. However, the monotonicity
of function D (see Appendix A) ensures that if we can obtain a feasible integer solution
in the neighborhood of the minimum of D, as determined by (3), then the respective
topology is likely to minimize the communication volume or at least provide an efficient
topology for the specific algorithm. According to this observation, we have implemented
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Figure 3: Variable balancing for 8 processes × 2 threads and 3D algorithm with X1 =
4X2

a heuristic function, that exhaustively searches for the optimal topology in the neigh-
borhood of the minimum of D. Since N is reasonably small for most practical cases,
the complexity of the function is not prohibitive in practice.

Geometrically, the procedure is equivalent to determining an N -dimensional point
(P1, . . . , PN), for which the communication volume D is minimized. Fig. 2 provides an
illustrative example of the specification of a 2D process topology for a 3D algorithm
with iteration space X1 ×X2 × Z and data dependencies (d, 0)T , (0, d)T . For instance,
assuming 64K processes on a large scale system, a 3D iteration space with X1 = 4X2

would benefit most from a 512 × 128 topology. On the other hand, an iteration space
with X1 = X2 would be more appropriately suited by a 256 × 256 topology, while the
case X1 = 2X2 would call for either of these two topologies, from the communication
point of view. In the latter case, the latency optimal X1 = X2 topology would be
selected.

5 Load Balancing for Hybrid Model

The applied hyperplane scheduling enables for a more efficient load balancing between
threads: Since the computations of each time step are essentially independent of the
communication data exchanged at that step, they can be arbitrarily distributed among
threads. Thus, under the funneled thread support level, it would be meaningful for
the master thread to assume a smaller part of computational load, so that the total
computation and the total communication associated with the owner process is evenly
distributed among all threads.

We have implemented two alternative static load balancing schemes. The first one
(constant balancing) requires the calculation of a constant balancing factor, which is
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common for all processes. For this purpose, we consider a non-boundary process, that
performs communication across all N process topology dimensions, and determine the
computational fraction of the master thread, that equalizes tile execution times on a
per thread basis. The second scheme (variable balancing) requires further knowledge
of the process topology, and calculates a different balancing factor for each process by
ignoring communication directions cutting the iteration space boundaries, since these
do not result to actual message passing. For both schemes, the balancing factor(s) can
be obtained by the following lemma:

Lemma 2. Let X1 × · · · × XN × Z be the iteration space of an N + 1-dimensional
iterative algorithm, that imposes data dependencies [d1, . . . , 0]T , . . . , [0, . . . , dN+1]

T . Let
P = P1× · · ·×PN be the process topology and T the number of threads available for the
parallel execution of the hybrid funneled implementation of the respective tiled algorithm.
The overall completion time of the algorithm is minimal if the master thread assumes a
portion bal

T
of the process’s computational load, where

bal = 1− T − 1

tcomp

{

Xz
P

}

N
∑

i=1
i∈Crank

tcomm

{

diPiXz

XiP

}

(4)

tcomp{x} The computation time required for x iterations

tcomm{x} The time required for the transmission of an x-sized message

z The tile height for each execution step of the tiled algorithm

Crank Valid communication directions of process rank

X Equal to
N
∏

i=1

Xi

Note that if condition i ∈ Crank is evaluated for each communication direction i,
variable balancing is enforced. Otherwise, if the above check is omitted, (4) delivers the
constant balancing factor.

The constant balancing scheme can be applied at compile-time, since it merely re-
quires knowledge of the underlying computational and network infrastructure, but also
tends to overestimate the communication load for boundary processes. On the other
hand, the variable balancing scheme can be applied only after selecting the process
topology, as it uses that information to calculate a different balancing factor for each
process. Fig. 3 demonstrates the variable load balancing scheme, for a dual SMP cluster.
A balancing factor of X% implies that the master thread will assume X

2
% of the pro-

cess’s computational part, while the second thread will execute the remaining 200−X
2

%.
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Generally, a factor bal, 0 ≤ bal ≤ 1, for load balancing T threads means that the mas-
ter thread assumes bal

T
of the process’s computational share, while all other threads are

assigned a fraction of T−bal
T (T−1)

of that share. Note that according to the variable scheme,
the balancing factor is slightly smaller for non-boundary processes. However, as the
active communication directions decrease for boundary processes, the balancing factor
increases, in order to preserve the desirable thread load balancing.

Clearly, the most important aspect for the effectiveness of both load balancing
schemes is the accurate modeling of basic performance parameters concerning the sys-
tem components, such as the sustained network bandwidth and latency, as well as and
the requirements imposed by the specific algorithm in terms of processing power. In
order to preserve the simplicity and applicability of the methodology, we avoid com-
plicated in-depth software and hardware modeling, and adopt simple, yet partly crude,
approximations for the system’s behavior. Obviously, the more thoroughly the various
system components are integrated into the theoretical calculation of tcomp and tcomm of
(4), the more efficient the load balancing that is obtained.

6 Experimental Results

In order to test the topology and load balancing optimizations, we use both a micro-
kernel benchmark, namely Alternating Direction Implicit integration (ADI), as well as
a synthetic communication-intensive benchmark. ADI is a stencil computation used
for solving partial differential equations ( [12]). Essentially, ADI is a simple three-
dimensional perfectly nested loop algorithm, that imposes unitary data dependencies
across all three space directions. It has an iteration space of X1 × X2 × Z, where Z
is considered to be the longest algorithm dimension. On the other hand, the synthetic
benchmark uses the same algorithmic pattern as ADI, but imposes data dependencies
(3, 0, 0)T , (0, 3, 0)T and (0, 0, 3)T , therefore requiring the exchange of notably more com-
munication data compared to ADI.

We use MPI as the message passing library and OpenMP as the multi-threading API.
Our experimental platform is an 8-node Pentium III dual-SMP cluster interconnected
with 100 Mbps FastEthernet. Each node has two Pentium III CPUs at 800 MHz, 256 MB
of RAM, 16 KB of L1 I Cache, 16 KB L1 D Cache, 256 KB of L2 cache, and runs Linux
with 2.4.26 kernel. For the support of OpenMP directives, we use Intel C++ compiler
v.8.1 with the following flags: -O3 -mcpu=pentiumpro -openmp -static. Finally, we
use MPI implementation MPICH v.1.2.6, appropriately configured for an SMP cluster,
so as to perform intra-node communication through SYS V shared memory. This version
of the MPICH implementation asserts a funneled thread support level, and is thus
capable of supporting all programming models discussed above. Some fine-tuning of the
MPICH communication performance for our experimental platform indicated using a
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Figure 4: Selection of communication-optimal process topology (P1, P2) for five experi-
mental iteration spaces

maximum socket buffer size of 104KB, so the respective P4 SOCKBUFSIZE environment
variable was appropriately set to that value for all cluster nodes.

In all cases, we use 16 processes for the pure message passing experiments, and 8
processes with 2 threads per process for all hybrid programs. For the pure message
passing case, an appropriate machine file is used to ensure that two MPI processes
residing on the same SMP node will communicate through shared memory segments.
Also, all experimental results are averaged over at least three independent executions
for each case. Although effort was made, so as to take measurements in the absence of
other users, our experimental platform is a non-dedicated cluster, and certain spikes in
our curves could not be avoided, though most of them can be ascribed to the message
passing communication performance.

6.1 Effect of Process Topology

The proposed process topology optimization was tested against various iteration spaces
and parallelization grains for both algorithms (ADI and the synthetic benchmark). More
specifically, we performed measurements for four iteration spaces, namely 16×256×16K,
32×256×16K, 64×256×16K and 128×256×16K. For the first two iteration spaces,
the proposed communication-optimal topology is 1×16, while for the last two 2×8. On
the other hand, in all cases the standard latency-minimal process topology is 4×4. The
proposed topology for all iteration spaces and both algorithms is schematically depicted
in Fig. 4.

Note that for the iteration spaces 16×256×16K and 64×256×16K, the applied 1×16
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Figure 5: Comparison of simple and topology-aware MPI model (various iteration
spaces, 8 dual SMP nodes, 16 processes)

and 2× 8 topologies are communication optimal, and can be directly derived from (3).
For the other two cases, (3) does not define a valid integer topology, so a valid one was
determined according to our heuristic method by exhaustively examining feasible integer
solutions in the neighborhood of the non-integer point defined by (3). Furthermore, we
omitted the 256×256×16K iteration space, as in that case the communication optimal
topology coincides with the standard 4 × 4 one. Also, we do not provide results for
iteration spaces X1 × X2 × Z with X1 > X2, since these results are very similar to
their X2 ×X1 × Z counterparts. Figures 5(a) and 5(b) summarize the minimum total
execution times, that were obtained for ADI and the synthetic benchmark, respectively.
All execution times are normalized in respect to the times corresponding to the latency-
minimal 4× 4 topology.

The experimental results demonstrate an impressive performance gain, if an ap-
propriate communication optimal process topology is selected. The improvement per-
centage increases, as we move away from relatively symmetric iteration spaces to more
asymmetric ones. For example, ADI exhibits an improvement more than 35% for the
16×256×16K iteration space, while around 2% for the 128×256×16K space. This is
due to the fact that the relative reduction of communication data in more asymmetric
cases is more significant compared to more symmetric ones. Conclusively, the topology
optimization is particularly important for algorithms with either asymmetric iteration
spaces or asymmetric data dependencies.

The results for the synthetic benchmark are even more impressive, as was anticipated,
since the communication volume in this case is significantly higher compared to ADI.
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For instance, we observe an improvement about 70% for the 16× 256× 16K iteration
space, which drops to about 6% for the 128× 256× 16K space. Consequently, given a
specific hardware and network infrastructure, the proposed topology optimization should
be applied to algorithms with intrinsic high communication to computation demands.
Also, in both algorithms the improvement percentage is proportional to the relative
reduction of the communication volume, while the cost of the additional execution steps
under asymmetric process topologies is negligible.

For each iteration space and parallelization grain, we also performed further profiling
of the computation and communication times. In all cases, the results are quite similar,
therefore we only portray partial profiling curves for one iteration space (64×256×16K).
For various granularities, or equivalently for different tile heights z, we measured max-
imum total execution times (Fig. 6(a)), maximum computation times (Fig. 6(b)) and
maximum communication times (Fig. 6(c)), by reducing the respective times of each
process over all processes and acquiring the maximum for each case. By partial commu-
nication times we imply all processing times related to message passing communication,
e.g. data transmission and reception MPICH non-blocking primitives, communication
completion calls, as well as packing and unpacking communication data. Fig. 6(a)
demonstrates that the topology-aware message passing implementation outperforms the
standard one for the entire range of considered granularities. The similar pattern of the
curves of Figures 6(a) and 6(c) imply that the improvements in the total execution time
can indeed be ascribed to the reduction of the message passing communication time.

Finally, the fact that the overall performance deteriorates significantly at z = 250
for the standard 4× 4 topology can be ascribed to the MPICH communication protocol
transition: The MPICH implementation distinguishes between three communication
protocols, namely short, eager and rendezvous, each of which implements a different
message passing approach, thus requiring a different number of transmitted packets and
possibly copies. For z = 250, the assumed mapping results to an amount of 1 × 64 ×
250×8 = 128000 bytes of communication data along the X1 dimension, which coincides
with the threshold value for the transition from the eager to the rendezvous MPICH
communication protocol. Generally, there is a trade-off between process synchronization
and intermediate data buffering, therefore when transitioning from the eager to the
rendezvous protocol a performance variation is not surprising.

Summarizing, taking into account the iteration space and data dependencies of the
algorithm when specifying the virtual process topology of its parallel tiled implementa-
tion is particularly important when

• the algorithm exhibits asymmetric data dependencies and/or iteration space di-
mensions

• the algorithm imposes relatively high communication-to-computation demands for
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Figure 6: Comparison of simple and topology-aware MPI model (ADI integration, iter-
ation space 64× 256× 16384, 8 SMP nodes)
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the underlying hardware/network parallel infrastructure and lower level message
passing software

6.2 Effect of Load Balancing

We intend to experimentally verify the effectiveness of both balancing schemes, as well
as their relative performance. A simplistic approach is adopted in order to model the
behavior of the underlying infrastructure, so as to approximate quantities tcomp and
tcomm of (4). As far as tcomp is concerned, we assume the computational cost involved
with the calculation of x iterations to be x times the average cost required for a single
iteration. On the other hand, the communication cost is considered to consist of a
constant start-up latency term, as well as a term proportional to the message size, that
depends upon the sustained network bandwidth on application level. Formally, we define

tcomp{x} = xtcomp{1} (5)

tcomm{x} = tstartup +
x

Bsustained

(6)

Since our primary objective was preserving simplicity and applicability in the model-
ing of environmental parameters, we intentionally overlooked at more complex phenom-
ena, such as cache effects or precise communication modeling. Despite having thoroughly
studied the MPICH source code in order to acquire an in-depth understanding of the
ch p4 ADI-2 device, we decided not to integrate implementation-specific protocol se-
mantics into our theoretical model in order to preserve generality and simplicity. The
same holds for cache effects, which would require a memory access pattern analysis
of the tiled application in respect to the memory hierarchy configuration of the un-
derlying architecture. Naturally, a more accurate representation of such hardware and
software issues involved would probably lead to more efficient load balancing. Also, a
major difficulty we encountered was modeling the TCP/IP socket communication perfor-
mance and incorporating that analysis in our load balancing scheme. Assuming distinct,
non-overlapping computation and communication phases and relatively high sustained
network bandwidth allowed bypassing this restriction. However, this hypothesis under-
estimates the communication cost for short messages, which are mostly latency-bound
and sustain relatively low throughput, while on the other hand it overestimates the re-
spective cost in the case of longer messages, where DMA transfers alleviate the CPU
significantly. Our main goal was providing some intuition as to the merit of these load
balancing schemes, even under the most simple and straightforward implementation.
For our analysis, we considered following values for the parameters of (5) and (6):
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Figure 7: Comparison of hybrid models (various iteration spaces, 8 dual SMP nodes)

tcomp{1} = 288nsec

tstartup = 107usec

Bsustained = 10MB/sec

The overall experimental results for ADI integration and various iteration spaces
are depicted in Fig. 7(a), while the respective results for the synthetic benchmark are
summarized in Fig. 7(b). These results are normalized in respect to the fine-grain
execution times. Granularity measurements for various iteration spaces and the ADI
integration are depicted in Figures 8(a), 8(b), 8(c) and 8(d).

Although the experimental results are more complex compared to the pure message
passing case, following conclusions can be drawn from the thorough investigation of the
obtained performance measurements:

• The coarse-grain hybrid model is not always more efficient than its fine-grain
counterpart. This observation reflects the fact that the poor load balancing of the
simple coarse-grain model annuls its advantages compared to the fine-grain alterna-
tive (e.g. overlapping computation with communication, no thread re-initialization
overhead etc.).

• When applying constant balancing, in some cases the balanced coarse-grain imple-
mentation is less effective than the unbalanced alternatives (either fine- or coarse-
grain). This can be attributed both to inaccurate theoretical modeling of the
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Figure 8: Comparison of hybrid models for ADI integration (8 dual SMP nodes)
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system parameters for the calculation of the balancing factors, as well as to the
inappropriateness of the constant balancing scheme for boundary processes. In-
terestingly, the constant load balancing approach falls short particularly in some
cases for the synthetic benchmark. This can be ascribed to the fact that not dis-
tinguishing between boundary and non-boundary processes when load balancing
has a more apparent effect at larger communication volumes.

• When applying variable balancing, the coarse-grain hybrid model was able to
deliver superior performance compared to the fine-grain alternative in all cases.
The performance improvement lies in the range of 2-8%. This observation complies
with our theoretical intuition that, under appropriate load balancing, the coarse-
grain model should always be able to perform better than the fine-grain equivalent.

• Variable balancing appears to be in almost all iteration spaces the most efficient
approach for the hybrid implementation. This observation also holds in terms
of granularity, as Figures 8(a)-8(d) reveal that variable balancing performs better
than any other implementation for almost all granularities. This remark intuitively
implies that by more accurate inclusion of all related system parameters, variable
balancing could in all cases deliver the best results.

6.3 Overall Comparison

Finally, we also performed an overall comparison of the message passing model, the
fine-grain hybrid one and the coarse-grain paradigm. All optimizations of the previous
Sections were applied in this comparison, that is, we considered communication optimal
process topologies and variable balancing for the coarse-grain model. Even though the
fine-grain model has proved to be the most inefficient hybrid approach, we nonetheless
included it in this comparison, mainly due to its popularity in related literature. We used
both benchmarks for the comparison, and display the obtained results in Figures 9(a)
and 9(b), normalized to the pure message passing execution times.

It should be noted that although this comparison may be useful towards the effi-
cient usage of SMP clusters, it is largely dependent on the comparative performance of
the two programming APIs (MPICH vs OpenMP support on Intel compiler). Also, it
relies heavily on how efficiently multi-threading hybrid programming is supported by
the MPICH library. Because of these reasons, the conclusions of the overall compar-
ison cannot be generalized beyond the chosen hardware-software combination of our
experimental testbed.

That said, we observe that fine-grain hybrid parallelization is always 3-8% worse in
terms of performance compared to pure message passing. This observation holds for
all iteration spaces, parallelization grains and both considered algorithms, and reflects
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Figure 9: Overall comparison of optimized programming models (8 dual SMP nodes)

the fact that unoptimized hybrid programming suffers from serious disadvantages in
respect to pure message passing, and fails to exploit its structural similarities with the
architecture of SMP clusters. Limiting parallelization due to the masteronly thread
support level according to Amdahl’s law, as well as the overhead of re-initializing the
thread structures by repeatedly entering and exiting parallel regions, are the main causes
for the poor performance of the fine-grain hybrid model. The performance gap between
the pure message passing and the fine-grain hybrid implementations widens in the case
of the communication intensive synthetic benchmark, proving that, instead of relieving
the communication part, fine-grain hybrid parallelization of iterative algorithms is even
less beneficial than the pure message passing approach as the communication needs of
the algorithm increase.

On the other hand, the combination of the coarse-grain model with an efficient load
balancing technique seems very promising, as it significantly improves the obtained
execution times. In fact, for most cases the optimized coarse-grain hybrid model out-
performs the pure message passing one, although only by a small fraction. However,
some drawbacks incurred by the coarse-grain model cannot be avoided, even under
all proposed optimizations, the two most fundamental of which involve the additional
communication overhead associated with having the master thread assume all message
passing, as well as the difficulties in accurately estimating the impact of the various
system parameters in order to apply load balancing. As a result, the message passing
and the coarse-grain model perform quite similarly, and only at specific cases appear
slight performance differences. Finally, we also provide granularity performance results
for the ADI integration and various iteration spaces in Figures 10(a)-10(d).
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Figure 10: Overall comparison for ADI integration (8 dual SMP nodes)
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7 Related Work

Hybrid programming models have arisen significant research interest. In [5] and [13],
fine-grain hybrid MPI-OpenMP implementations perform worse than pure MPI for the
popular NPB 2.3 benchmarks, mainly due to the relatively lower parallelization de-
gree achieved with the hybrid model, and also because of different communication and
memory access patterns. Similarly, the application of the hybrid model on specific scien-
tific algorithms has delivered some controversial results (discrete element modeling [10],
computational fluid dynamics [7], spectral climate modeling [15] etc). In [8], we have
conducted a preliminary evaluation of hybrid programming models for nested loop al-
gorithms, but without considering the important process topology and load balancing
issues discussed here.

Load balancing techniques and theoretical inspection of the hybrid model in general
have also been analyzed and discussed in literature. In [18], the authors distinguish
between two main hybrid paradigms, namely masteronly (fine-grain) and overlapping
(either funneled or multiple, coarse-grain). They investigate the deficiencies of the mas-
teronly hybrid model (e.g. inter-node bandwidth saturation, CPU waste at MPI com-
munication etc.), and claim that the coarse-grain hybrid model diminishes these effects
with overlapping of computation and communication, as well as thread load balancing
balancing techniques. From a different perspective, [14] addresses the problem of opti-
mally mapping iterative algorithms interleaving computation and communication phases
onto a heterogeneous cluster, taking into account network links contention and provides
a heuristic method for efficient mapping. Load balancing is proposed here in order
to mitigate varying processing power, although only task distribution to unidimensional
processor arrays is considered. Nevertheless, no concrete load balancing techniques have
been implemented and more importantly evaluated for the hybrid programming model.

Scheduling iterative algorithms on parallel platforms has been extensively studied,
although no complete analysis for the specification of communication minimal process
topology has been proposed to our knowledge. In [4] a cyclic columnwise allocation
is considered the optimal approach among all possible distributions of tiles to equally
powerful processors. In [3] the authors propose an efficient columnwise tile to processor
distribution in heterogeneous environments. Based on the idea that block sizes should
be proportional to the processor power, the authors develop a heuristic to determine
efficient tile to processor distributions with bounded chunk size. The problem is to
some extent equivalent to that of calculating an optimal process topology for specific
iterative algorithms, for which we propose a heuristic method in this article. In [6], the
authors consider a multipartioning parallelization strategy for line-sweep computations,
and propose optimal domain decomposition by enforcing proper load balancing and
minimizing the number of communication messages.

Summarizing, programming SMP clusters and hybrid parallel programming pose
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new challenges and also shed new light on older high performance related considera-
tions. Although in theory hybrid programming models seem to be more appropriate
for SMP clusters, experimental evaluation has eloquently demonstrated that achieving
superior performance with hybrid programming is an intricate task, calling for efficient
scheduling and load balancing parallelization techniques. Solid multi-threading sup-
port from the message passing library is also a very important issue; often, achieving
high performance under hybrid programming is directly associated with overcoming the
limitations imposed by the message passing library. Towards this direction, thread-safe
extensions to popular existing message passing libraries, that would allow for portability,
overlapping of computation and communication, and preserving latencies of individual
networks, such as the approach presented in [17], could be helpful.

8 Conclusions

In this article we have discussed various programming alternatives for the paralleliza-
tion of fully permutable iterative algorithms onto SMP clusters. We proposed a pure
message passing implementation, as well as hybrid parallelization, and considered both
major hybrid parallelization approaches, namely fine-grain and coarse-grain. We inves-
tigated the effect of the selected process topology in terms of overall completion time,
proposed a heuristic method for the specification of a communication optimal process
topology according to the iteration space and data dependencies of the algorithm and
experimentally evaluated the performance gain attained when assuming the proposed
optimization. Furthermore, experimental profiling of the hybrid model confirmed that
a naive, simple fine-grain implementation suffers from major disadvantages compared
to the pure message passing model, most notably the overhead of re-initializing parallel
regions and also restricting parallelization according to Amdahl’s law due to the mas-
teronly thread support scheme. The poor load balancing of the funneled thread support
scheme results to the unoptimized coarse-grain model also exhibiting comparatively low
performance, although it does help in overcoming some of the limitations of the fine-
grain alternative. We provide some guidelines for a variable load balancing scheme of
the coarse-grain model, that delivers superior performance compared to the other hy-
brid programming alternatives. Last, we performed an overall comparison between the
optimized versions of the three most popular implementations (message passing, fine-
grain hybrid, coarse-grain hybrid), and concluded that despite the poor multi-threading
support on behalf of the message passing library, when adopting all optimizations the
coarse-grain model can be competitive to or even better than the pure message passing
model.
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A Proof of Communication-optimal Process Topol-

ogy

Proof. According to (1), it holds

PN =
P

P1 × · · · × PN−1
(7)

Each process assumes
⌈

Xi

Pi

⌉

iterations in direction i under the proposed mapping, where

1 ≤ i ≤ N . For the sake of simplicity, we assume that

⌈

Xi

Pi

⌉

≃ Xi

Pi

(8)

Due to the data dependences of the algorithm, each process is required to send di
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∏

j=1
j 6=i

Xj

Pj
Z

data to direction i. Thus, the total communication volume D of a process can be
obtained by the following expression:
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(9)

Using (7), (9) can be written by substituting PN as follows:

D = D(P1, . . . , PN−1)

=

Z
N
∏

i=1

Xi

P

N−1
∑

i=1

diPi

Xi

+

dNZ
N
∏

i=1

Xi

XNP1 . . . PN−1
(10)

Note that D is substantially a function of P1, . . . , PN−1 (formally: D : NN−1 → R). Let
D be the real extension of D, defined by (10) for Pj ∈ R, 1 ≤ j ≤ N (D : RN−1 → R).

30



For a stationary point (P1, . . . , PN−1) of D and 1 ≤ j ≤ N − 1 it holds:

∂D

∂Pj

= 0 (11)

djZ
N
∏

i=1

Xi

PXj

−
dNZ

N
∏

i=1

Xi

XNP1 . . . P 2
j . . . PN−1

= 0

dj

N
∏

i=1

Xi

PXj

=

dNPN

N
∏

i=1

Xi

XNPjP

djPj

Xj

=
dNPN

XN

(12)

Also,

∂2D

∂Pj
2 =

2dN

N
∏

i=1

Xi

XNP1 . . . P 3
j . . . PN−1

> 0 (13)

Because of (11) and (13), D has a minimum at (P1, . . . , PN−1), and as Pi ∈ N, 1 ≤ i ≤
N − 1, this will be the minimum of D, as well. Therefore, the communication data is
minimal when a topology P1 × · · · × PN satisfying (12) is assumed. Finally, it holds

P
N
∏

i=1

di

N
∏

i=1

Xi

=
d1P1

X1
. . .

dNPN

XN

(14)

and assuming D is minimal at (P1, . . . , PN), (14) can be written because of (12) as
follows:

P
N
∏

i=1

di

N
∏

i=1

Xi

=

(

djPj

Xj

)N

Pj =
Xj

dj

N

√

√

√

√

√

√

√

P
N
∏

i=1

di

N
∏

i=1

Xi

(15)
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B Proof of Optimal Load Balancing for Hybrid Fun-

neled Model

Proof. For the sake of simplicity, and without loss of generality, we assume that all divi-
sions result to integers, in order to avoid over-complicating our equations with ceil and
floor operators. Thus, each process will be assigned Z

z
tiles, each containing Xz

P
itera-

tions. Furthermore, as the master thread assumes the execution of a fraction bal
T

of the
process’s computational load, each of the other T −1 threads will be assigned a fraction
of T−bal

T (T−1)
of the above computations. Note that under the funneled hybrid model, only

the master thread is allowed to perform inter-node communication, and should therefore
take care of both its own communication data, as well as the communication data of
the other threads. The overall completion time of the algorithm can be approximated
by multiplying the total number of execution steps with the execution time required for
each tile (step) Ttile. It holds

Ttile = max{Tmaster , Tother} (16)

where

Tmaster = tcomp

{

bal

T

Xz

P

}

+

N
∑

i=1
i∈Crank

tcomm

{

diPiXz

XiP

}

(17)

Tother = tcomp

{

T − bal

T (T − 1)

Xz

P

}

(18)

In order to minimize the overall completion time, or equivalently the execution time for
each tile (since the number of execution steps does not depend on the load distribution
between threads), Tmaster must be equal to Tother. If this is not the case, that is if
Tmaster 6= Tother, there can always be a more efficient load balancing by assigning more
work to the more lightly burdened thread(s). Consequently, for minimal completion
time under the assumed mapping, it holds

Tmaster = Tother (19)

(17), (18) and (19) can be easily combined to deliver (4).
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